\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping

Abstract Related Papers Cited by
  • We study regular solutions to wave equations with super-critical source terms, e.g., of exponent $p>5$ in 3D. Such sources have been a major challenge in the investigation of finite-energy ($H^1 \times L^2$) solutions to wave PDEs for many years. The wellposedness has been settled in part, but even the local existence, for instance, in 3 dimensions requires the relation $p\leq 6m/(m+1)$ between the exponents $p$ of the source and $m$ of the viscous damping.
        We prove that smooth initial data ($H^2 \times H^1$) yields regular solutions that do not depend on the above correlation. Local existence is demonstrated for any source exponent $p\geq 1$ and any monotone damping including feedbacks growing exponentially or logarithmically at infinity, or with no damping at all. The result holds in dimensions 3 and 4, and with some restrictions on $p$ in dimensions $n\geq 5$. Furthermore, if we assert the classical condition that the damping grows as fast as the source, then these regular solutions are global.
    Mathematics Subject Classification: Primary: 35L05; Secondary: 35A01, 35L20, 35B33, 46E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.

    [2]

    R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

    [3]

    V. Barbu, "Analysis and Control of Nonlinear Infinite Dimensional Systems," Mathematics in Science and Engineering, 190, Academic Press, Inc., Boston, MA, 1993.

    [4]

    V. Barbu, I. Lasiecka and M. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611 (electronic).doi: 10.1090/S0002-9947-05-03880-8.

    [5]

    L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping, Nonlinear Analysis A: Theory, Methods and Applications, 71 (2009), e560-e575.doi: 10.1016/j.na.2008.11.062.

    [6]

    L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Applicationes Mathematicae, 35 (2008), 281-304.doi: 10.4064/am35-3-3.

    [7]

    L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860.doi: 10.3934/dcds.2008.22.835.

    [8]

    L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.doi: 10.1016/j.jde.2010.03.009.

    [9]

    L. Bociu and P. RaduExistence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping, Discrete Contin. Dyn. Syst., 2009, Dynamical Systems, Differential Equations and Applications, 7th AIMS Conference, suppl., 60-71.

    [10]

    L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Math. Nachr., 284 (2011), 2032-2064.doi: 10.1002/mana.200910182.

    [11]

    M. Cavalcanti, V. N. Cavalcanti and P. Martinez, Existence and decay rates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.doi: 10.1016/j.jde.2004.04.011.

    [12]

    I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Communications in Partial Differential Equations, 27 (2002), 1901-1951.doi: 10.1081/PDE-120016132.

    [13]

    I. Chueshov and I. Lasiecka, "Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics," Springer Monographs in Mathematics, Springer, New York, 2010.doi: 10.1007/978-0-387-87712-9.

    [14]

    E. Fereisl, Global attractors for semilinear damped wave equations with supercritical exponent, Journal of Differential Equations, 116 (1995), 431-447.doi: 10.1006/jdeq.1995.1042.

    [15]

    J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110 (1992), 96-130.

    [16]

    V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, Journal of Differential Equations, 109 (1994), 295-308.doi: 10.1006/jdeq.1994.1051.

    [17]

    W. Gong and Z. Shi, Drop properties and approximative compactness in Orlicz-Bochner function spaces, J. Math. Anal. Appl., 344 (2008), 748-756.doi: 10.1016/j.jmaa.2008.03.024.

    [18]

    A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Proceedings of the 13th Winter School on Abstract Analysis (Srní, 1985), Rend. Circ. Mat. Palermo (2) Suppl., 10 (1985), 63-73 (1986).

    [19]

    M. A. Krasnosel'skiĭ and J. B. Rutickiĭ, "Convex Functions and Orlicz Spaces," Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.

    [20]

    I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations, 6 (1993), 507-533.

    [21]

    I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems," Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000.

    [22]

    V. Lakshmikantham and S. Leela, "Differential and Integral Inequalities: Theory and Applications. Vol. I: Ordinary Differential Equations," Mathematics in Science and Engineering, Vol. 55-I, Academic Press, New York, 1969.

    [23]

    G. Lebeau, Perte de régularité pour les équations d'ondes sur-critiques, Bull. Soc. Math. France, 133 (2005), 145-157.

    [24]

    P.-K. Lin, "Köthe-Bochner Function Spaces," Birkhäuser Boston, Inc., Boston, MA, 2004.

    [25]

    J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 1," Dunod, Paris, 1968.

    [26]

    L. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.

    [27]

    P. Radu, Weak solutions to the Cauchy problem of a semilinear wave equation with damping and source terms, Advances in Differential Equations, 10 (2005), 1261-1300.

    [28]

    P. Radu, Weak solutions to the initial boundary value problem of a semilinear wave equation with damping and source terms, Applicationae Mathematica (Warsaw), 35 (2008), 355-378.doi: 10.4064/am35-3-7.

    [29]

    P. Radu, Strong solutions for semilinear wave equations with damping and source terms, Appl. Anal. Analysis, 92 (2013), 718-739.

    [30]

    J. Serrin, G. Todorova and E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations, 16 (2003), 13-50.

    [31]

    S. Shang, Y. Cui and Y. Fu, Nearly strict convexity in Musielak-Orlicz-Bochner function spaces, Nonlinear Anal., 74 (2011), 6333-6341.doi: 10.1016/j.na.2011.06.013.

    [32]

    J. Simon, Compact sets in the space $L_p(0,T;B)$, Annali di Mat. Pura et Applicate (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.

    [33]

    G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), 891-905.doi: 10.1016/S0362-546X(98)00317-4.

    [34]

    G. Todorova and E. Vitillaro, Blow-up for nonlinear dissipative wave equations in $\mathbbR^n$, J. Math. Anal. Appl., 303 (2005), 242-257.doi: 10.1016/j.jmaa.2004.08.039.

    [35]

    E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms, J. of Differential Equations, 186 (2002), 259-298.doi: 10.1016/S0022-0396(02)00023-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return