Citation: |
[1] |
J.-P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044. |
[2] |
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003. |
[3] |
V. Barbu, "Analysis and Control of Nonlinear Infinite Dimensional Systems," Mathematics in Science and Engineering, 190, Academic Press, Inc., Boston, MA, 1993. |
[4] |
V. Barbu, I. Lasiecka and M. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611 (electronic).doi: 10.1090/S0002-9947-05-03880-8. |
[5] |
L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping, Nonlinear Analysis A: Theory, Methods and Applications, 71 (2009), e560-e575.doi: 10.1016/j.na.2008.11.062. |
[6] |
L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Applicationes Mathematicae, 35 (2008), 281-304.doi: 10.4064/am35-3-3. |
[7] |
L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860.doi: 10.3934/dcds.2008.22.835. |
[8] |
L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.doi: 10.1016/j.jde.2010.03.009. |
[9] |
L. Bociu and P. Radu, Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping, Discrete Contin. Dyn. Syst., 2009, Dynamical Systems, Differential Equations and Applications, 7th AIMS Conference, suppl., 60-71. |
[10] |
L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Math. Nachr., 284 (2011), 2032-2064.doi: 10.1002/mana.200910182. |
[11] |
M. Cavalcanti, V. N. Cavalcanti and P. Martinez, Existence and decay rates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.doi: 10.1016/j.jde.2004.04.011. |
[12] |
I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Communications in Partial Differential Equations, 27 (2002), 1901-1951.doi: 10.1081/PDE-120016132. |
[13] |
I. Chueshov and I. Lasiecka, "Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics," Springer Monographs in Mathematics, Springer, New York, 2010.doi: 10.1007/978-0-387-87712-9. |
[14] |
E. Fereisl, Global attractors for semilinear damped wave equations with supercritical exponent, Journal of Differential Equations, 116 (1995), 431-447.doi: 10.1006/jdeq.1995.1042. |
[15] |
J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110 (1992), 96-130. |
[16] |
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, Journal of Differential Equations, 109 (1994), 295-308.doi: 10.1006/jdeq.1994.1051. |
[17] |
W. Gong and Z. Shi, Drop properties and approximative compactness in Orlicz-Bochner function spaces, J. Math. Anal. Appl., 344 (2008), 748-756.doi: 10.1016/j.jmaa.2008.03.024. |
[18] |
A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Proceedings of the 13th Winter School on Abstract Analysis (Srní, 1985), Rend. Circ. Mat. Palermo (2) Suppl., 10 (1985), 63-73 (1986). |
[19] |
M. A. Krasnosel'skiĭ and J. B. Rutickiĭ, "Convex Functions and Orlicz Spaces," Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. |
[20] |
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential and Integral Equations, 6 (1993), 507-533. |
[21] |
I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems," Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000. |
[22] |
V. Lakshmikantham and S. Leela, "Differential and Integral Inequalities: Theory and Applications. Vol. I: Ordinary Differential Equations," Mathematics in Science and Engineering, Vol. 55-I, Academic Press, New York, 1969. |
[23] |
G. Lebeau, Perte de régularité pour les équations d'ondes sur-critiques, Bull. Soc. Math. France, 133 (2005), 145-157. |
[24] |
P.-K. Lin, "Köthe-Bochner Function Spaces," Birkhäuser Boston, Inc., Boston, MA, 2004. |
[25] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications. Vol. 1," Dunod, Paris, 1968. |
[26] |
L. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303. |
[27] |
P. Radu, Weak solutions to the Cauchy problem of a semilinear wave equation with damping and source terms, Advances in Differential Equations, 10 (2005), 1261-1300. |
[28] |
P. Radu, Weak solutions to the initial boundary value problem of a semilinear wave equation with damping and source terms, Applicationae Mathematica (Warsaw), 35 (2008), 355-378.doi: 10.4064/am35-3-7. |
[29] |
P. Radu, Strong solutions for semilinear wave equations with damping and source terms, Appl. Anal. Analysis, 92 (2013), 718-739. |
[30] |
J. Serrin, G. Todorova and E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations, 16 (2003), 13-50. |
[31] |
S. Shang, Y. Cui and Y. Fu, Nearly strict convexity in Musielak-Orlicz-Bochner function spaces, Nonlinear Anal., 74 (2011), 6333-6341.doi: 10.1016/j.na.2011.06.013. |
[32] |
J. Simon, Compact sets in the space $L_p(0,T;B)$, Annali di Mat. Pura et Applicate (4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[33] |
G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), 891-905.doi: 10.1016/S0362-546X(98)00317-4. |
[34] |
G. Todorova and E. Vitillaro, Blow-up for nonlinear dissipative wave equations in $\mathbbR^n$, J. Math. Anal. Appl., 303 (2005), 242-257.doi: 10.1016/j.jmaa.2004.08.039. |
[35] |
E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms, J. of Differential Equations, 186 (2002), 259-298.doi: 10.1016/S0022-0396(02)00023-2. |