• Previous Article
    Higher differentiability in the context of Besov spaces for a class of nonlocal functionals
  • EECT Home
  • This Issue
  • Next Article
    Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping
June  2013, 2(2): 281-300. doi: 10.3934/eect.2013.2.281

Avoiding degeneracy in the Westervelt equation by state constrained optimal control

1. 

Institute for Mathematics and Scientific Computing, Karl-Franzens-Universität Graz, Heinrichstr. 36, 8010 Graz, Austria

2. 

Institute for Mathematics, Alpen-Adria Universität Klagenfurt, Universitätsstr. 65-67, 9020 Klagenfurt

Received  September 2012 Revised  November 2012 Published  March 2013

The Westervelt equation, which describes nonlinear acoustic wave propagation in high intensity ultrasound applications, exhibits potential degeneracy for large acoustic pressure values. While well-posedness results on this PDE have so far been based on smallness of the solution in a higher order spatial norm, non-degeneracy can be enforced explicitly by a pointwise state constraint in a minimization problem, thus allowing for pressures with large gradients and higher-order derivatives, as is required in the mentioned applications. Using regularity results on the linearized state equation, well-posedness and necessary optimality conditions for the PDE constrained optimization problem can be shown via a relaxation approach by Alibert and Raymond [2].
Citation: Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations and Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281
References:
[1]

R. A. Adams and J. F. Fournier, "Sobolev Spaces,'' Elsevier, Oxford, 2003.

[2]

J.-J. Alibert and J.-P. Raymond, A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim., 19 (1998), 697-704. doi: 10.1080/01630569808816854.

[3]

J. F. Bonnans and E. Casas, Optimal control of semilinear multistate systems with state constraints, SIAM J. Contr. Opt., 27 (1989), 446-455. doi: 10.1137/0327023.

[4]

Eduardo Casas and Fredi Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem, Control and Cybernetics, 31 (2002), 695-712.

[5]

C. Clason and B. Kaltenbacher, Optimal control of a singular PDE modeling transient MEMS with control or state constraints, in "Mathematical Optimization and Applications in Biomedical Sciences,'' Technical Report, 2012-017, SFB, 2012.

[6]

C. Clason, B. Kaltenbacher and S. Veljović, Boundary optimal control of the Westervelt and the Kuznetsov equation, Journal of Mathematical Analysis and Applications, 356 (2009), 738-751. doi: 10.1016/j.jmaa.2009.03.043.

[7]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems Ser. S, 2 (2009), 503-523. doi: 10.3934/dcdss.2009.2.503.

[8]

P. J. Westervelt, Parametric acoustic array, The Journal of the Acoustic Society of America, 35 (1963), 535-537.

[9]

M. Wilke and S. Meyer, Optimal regularity and long time behavior of solutions for the Westervelt equation, Applied Mathematics and Optimization, 64 (2011), 257-273. doi: 10.1007/s00245-011-9138-9.

show all references

References:
[1]

R. A. Adams and J. F. Fournier, "Sobolev Spaces,'' Elsevier, Oxford, 2003.

[2]

J.-J. Alibert and J.-P. Raymond, A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim., 19 (1998), 697-704. doi: 10.1080/01630569808816854.

[3]

J. F. Bonnans and E. Casas, Optimal control of semilinear multistate systems with state constraints, SIAM J. Contr. Opt., 27 (1989), 446-455. doi: 10.1137/0327023.

[4]

Eduardo Casas and Fredi Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem, Control and Cybernetics, 31 (2002), 695-712.

[5]

C. Clason and B. Kaltenbacher, Optimal control of a singular PDE modeling transient MEMS with control or state constraints, in "Mathematical Optimization and Applications in Biomedical Sciences,'' Technical Report, 2012-017, SFB, 2012.

[6]

C. Clason, B. Kaltenbacher and S. Veljović, Boundary optimal control of the Westervelt and the Kuznetsov equation, Journal of Mathematical Analysis and Applications, 356 (2009), 738-751. doi: 10.1016/j.jmaa.2009.03.043.

[7]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems Ser. S, 2 (2009), 503-523. doi: 10.3934/dcdss.2009.2.503.

[8]

P. J. Westervelt, Parametric acoustic array, The Journal of the Acoustic Society of America, 35 (1963), 535-537.

[9]

M. Wilke and S. Meyer, Optimal regularity and long time behavior of solutions for the Westervelt equation, Applied Mathematics and Optimization, 64 (2011), 257-273. doi: 10.1007/s00245-011-9138-9.

[1]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control and Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[2]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[3]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[4]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[5]

Harbir Antil, Ciprian G. Gal, Mahamadi Warma. A unified framework for optimal control of fractional in time subdiffusive semilinear PDEs. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1883-1918. doi: 10.3934/dcdss.2022012

[6]

Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations and Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i

[7]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control and Related Fields, 2022, 12 (2) : 327-341. doi: 10.3934/mcrf.2021024

[8]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[9]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[10]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control and Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032

[11]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[12]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[13]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[14]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[15]

Nikolaos Kazantzis, Vasiliki Kazantzi. Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors. Mathematical Biosciences & Engineering, 2010, 7 (2) : 401-419. doi: 10.3934/mbe.2010.7.401

[16]

Adrien Dekkers, Anna Rozanova-Pierrat, Vladimir Khodygo. Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4231-4258. doi: 10.3934/dcds.2020179

[17]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

[18]

Stephen W. Taylor. Locally smooth unitary groups and applications to boundary control of PDEs. Evolution Equations and Control Theory, 2013, 2 (4) : 733-740. doi: 10.3934/eect.2013.2.733

[19]

Vahagn Nersesyan. Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Mathematical Control and Related Fields, 2021, 11 (2) : 237-251. doi: 10.3934/mcrf.2020035

[20]

Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (139)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]