June  2013, 2(2): 301-318. doi: 10.3934/eect.2013.2.301

Higher differentiability in the context of Besov spaces for a class of nonlocal functionals

1. 

University of Nebraskat-Lincoln, Department of Mathematics, 203 Avery Hall, PO BOX 880130, Lincoln NE 68588-0130, United States, United States

Received  November 2012 Revised  January 2013 Published  March 2013

The aim of this paper is to contribute to the nonlocal theory within the calculus of variations by studying two classes of nonlocal functionals. Since the nonlocal theory is not quite as developed as the local theory, a proof for the existence and uniqueness of minimizers is provided. However, the main result within the paper establishes the higher differentiability, in the context of Besov spaces, for minimizers of nonlocal functionals. This result is obtained under quadratic growth assumptions via the difference quotient method.
Citation: Mikil Foss, Joe Geisbauer. Higher differentiability in the context of Besov spaces for a class of nonlocal functionals. Evolution Equations & Control Theory, 2013, 2 (2) : 301-318. doi: 10.3934/eect.2013.2.301
References:
[1]

Tsegaye G. Ayele and Abraham N. Abebe, Properties of iterated norms in Nikol'skii-Besov type spaces with generalized smoothness,, Eurasian Mathematics Journal, 1 (2010), 20.   Google Scholar

[2]

Viktor I. Burenkov, A theorem on iterated norms for Nikol'skii-Besov spaces and its application,, (Russian) Trudy Mat. Inst. Steklov., 181 (1988), 27.   Google Scholar

[3]

Viktor I. Burenkov, "Sobolev Spaces on Domains,", Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 137 (1998).   Google Scholar

[4]

Bernard Dacorogna, "Direct Methods in the Calculus of Variations,", Second edition, 78 (2008).   Google Scholar

[5]

Lawrence C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998).   Google Scholar

[6]

Guy Gilboa and Stanley Osher, Nonlocal linear image regularization and supervised segmentation,, Multiscale Modeling & Simulation, 6 (2007), 595.  doi: 10.1137/060669358.  Google Scholar

[7]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[8]

Enrico Giusti, "Direct Methods in the Calculus of Variations,", World Scientific Publishing Co. Inc., (2003).  doi: 10.1142/9789812795557.  Google Scholar

[9]

Brittney Hinds and Petronela Radu, Dirichlet's principle and wellposedness of solutions for a nonlocal $p$-Laplacian system,, Applied Mathematics and Computation, 219 (2012), 1411.  doi: 10.1016/j.amc.2012.07.045.  Google Scholar

[10]

Giovanni Leoni, "A First Course in Sobolev Spaces,", Graduate Studies in Mathematics, 105 (2009).   Google Scholar

show all references

References:
[1]

Tsegaye G. Ayele and Abraham N. Abebe, Properties of iterated norms in Nikol'skii-Besov type spaces with generalized smoothness,, Eurasian Mathematics Journal, 1 (2010), 20.   Google Scholar

[2]

Viktor I. Burenkov, A theorem on iterated norms for Nikol'skii-Besov spaces and its application,, (Russian) Trudy Mat. Inst. Steklov., 181 (1988), 27.   Google Scholar

[3]

Viktor I. Burenkov, "Sobolev Spaces on Domains,", Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 137 (1998).   Google Scholar

[4]

Bernard Dacorogna, "Direct Methods in the Calculus of Variations,", Second edition, 78 (2008).   Google Scholar

[5]

Lawrence C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, 19 (1998).   Google Scholar

[6]

Guy Gilboa and Stanley Osher, Nonlocal linear image regularization and supervised segmentation,, Multiscale Modeling & Simulation, 6 (2007), 595.  doi: 10.1137/060669358.  Google Scholar

[7]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Modeling & Simulation, 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[8]

Enrico Giusti, "Direct Methods in the Calculus of Variations,", World Scientific Publishing Co. Inc., (2003).  doi: 10.1142/9789812795557.  Google Scholar

[9]

Brittney Hinds and Petronela Radu, Dirichlet's principle and wellposedness of solutions for a nonlocal $p$-Laplacian system,, Applied Mathematics and Computation, 219 (2012), 1411.  doi: 10.1016/j.amc.2012.07.045.  Google Scholar

[10]

Giovanni Leoni, "A First Course in Sobolev Spaces,", Graduate Studies in Mathematics, 105 (2009).   Google Scholar

[1]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[7]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]