June  2013, 2(2): 319-335. doi: 10.3934/eect.2013.2.319

Global existence for exterior problems of semilinear wave equations with the null condition in $2$D

1. 

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Received  October 2012 Revised  February 2013 Published  March 2013

In this paper we deal with the exterior problem for a system of nonlinear wave equations in two space dimensions under some geometric restriction on the obstacle. We prove a global existence result for the problem with small and smooth initial data, provided that the nonlinearity is taken to be cubic and satisfies the null condition.
Citation: Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations and Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319
References:
[1]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618. doi: 10.1007/s002220100165.

[2]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differential Equations, 18 (1993), 895-916. doi: 10.1080/03605309308820955.

[3]

P. Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems, Amer. J. Math., 117 (1995), 1475-1505. doi: 10.2307/2375027.

[4]

A. Hoshiga and H. Kubo, Global solvability for systems of nonlinear wave equations with multiple speeds in two space dimensions, Diff. Integral Eqs., 17 (2004), 593-622.

[5]

M. Ikawa, Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan, 20 (1968), 580-608.

[6]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain, J. Math. Soc. Japan, 60 (2008), 1135-1170.

[7]

S. Katayama and H. Kubo, Decay estimates of a tangential derivative to the light cone for the wave equation and their application, SIAM J. Math. Anal., 39 (2008), 1851-1862. doi: 10.1137/070694417.

[8]

S. Katayama, H. Kubo and S. Lucente, Almost global existence for exterior Neumann problems of semilinear wave equations in 2D,, to appear in Commun. Pure Appl. Anal., (). 

[9]

M. Keel, H. Smith and C. D. Sogge, On global existence for nonlinear wave equations outside of convex obstacles, Amer. J. Math., 122 (2000), 805-842.

[10]

M. Keel, H. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains, J. Funct. Anal., 189 (2002), 155-226. doi: 10.1006/jfan.2001.3844.

[11]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332. doi: 10.1002/cpa.3160380305.

[12]

S. Klainerman, The null condition and global existence to nonlinear wave equations, in "Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1" (Santa Fe, N.M., 1984), Lectures in Appl. Math., 23, Amer. Math. Soc., Providence, RI, (1986), 293-326.

[13]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain, in "Asymptotic Analysis and Singularities—hyperbolic and Dispersive PDEs and Fluid Mechanics", Advanced Studies in Pure Mathematics, 47-1, Math. Soc. of Japan, Tokyo, (2007), 31-54.

[14]

H. Kubo, Almost global existence for nonlinear wave equations in an exterior domain in two space dimensions,, preprint, (). 

[15]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of noncompact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.

[16]

J. Metcalfe, Global existence for semilinear wave equations exterior to nontrapping obstacles, Houston J. Math., 30 (2004), 259-281.

[17]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains, Forum Math., 17 (2005), 133-168. doi: 10.1515/form.2005.17.1.133.

[18]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391-472.

[19]

J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75-117. doi: 10.1007/s00222-004-0383-2.

[20]

J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains, Math. Z., 256 (2007), 521-549. doi: 10.1007/s00209-006-0083-2.

[21]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.

[22]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation, J. Differential Equations, 194 (2003), 221-236. doi: 10.1016/S0022-0396(03)00189-X.

[23]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z., 202 (1989), 1-64. doi: 10.1007/BF01180683.

[24]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199. doi: 10.1007/BF01164023.

[25]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems, (Russian) Uspehi Mat. Nauk, 30 (1975), 3-55.

show all references

References:
[1]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618. doi: 10.1007/s002220100165.

[2]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differential Equations, 18 (1993), 895-916. doi: 10.1080/03605309308820955.

[3]

P. Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems, Amer. J. Math., 117 (1995), 1475-1505. doi: 10.2307/2375027.

[4]

A. Hoshiga and H. Kubo, Global solvability for systems of nonlinear wave equations with multiple speeds in two space dimensions, Diff. Integral Eqs., 17 (2004), 593-622.

[5]

M. Ikawa, Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan, 20 (1968), 580-608.

[6]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain, J. Math. Soc. Japan, 60 (2008), 1135-1170.

[7]

S. Katayama and H. Kubo, Decay estimates of a tangential derivative to the light cone for the wave equation and their application, SIAM J. Math. Anal., 39 (2008), 1851-1862. doi: 10.1137/070694417.

[8]

S. Katayama, H. Kubo and S. Lucente, Almost global existence for exterior Neumann problems of semilinear wave equations in 2D,, to appear in Commun. Pure Appl. Anal., (). 

[9]

M. Keel, H. Smith and C. D. Sogge, On global existence for nonlinear wave equations outside of convex obstacles, Amer. J. Math., 122 (2000), 805-842.

[10]

M. Keel, H. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains, J. Funct. Anal., 189 (2002), 155-226. doi: 10.1006/jfan.2001.3844.

[11]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332. doi: 10.1002/cpa.3160380305.

[12]

S. Klainerman, The null condition and global existence to nonlinear wave equations, in "Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1" (Santa Fe, N.M., 1984), Lectures in Appl. Math., 23, Amer. Math. Soc., Providence, RI, (1986), 293-326.

[13]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain, in "Asymptotic Analysis and Singularities—hyperbolic and Dispersive PDEs and Fluid Mechanics", Advanced Studies in Pure Mathematics, 47-1, Math. Soc. of Japan, Tokyo, (2007), 31-54.

[14]

H. Kubo, Almost global existence for nonlinear wave equations in an exterior domain in two space dimensions,, preprint, (). 

[15]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of noncompact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.

[16]

J. Metcalfe, Global existence for semilinear wave equations exterior to nontrapping obstacles, Houston J. Math., 30 (2004), 259-281.

[17]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains, Forum Math., 17 (2005), 133-168. doi: 10.1515/form.2005.17.1.133.

[18]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391-472.

[19]

J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75-117. doi: 10.1007/s00222-004-0383-2.

[20]

J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains, Math. Z., 256 (2007), 521-549. doi: 10.1007/s00209-006-0083-2.

[21]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.

[22]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation, J. Differential Equations, 194 (2003), 221-236. doi: 10.1016/S0022-0396(03)00189-X.

[23]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z., 202 (1989), 1-64. doi: 10.1007/BF01180683.

[24]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199. doi: 10.1007/BF01164023.

[25]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems, (Russian) Uspehi Mat. Nauk, 30 (1975), 3-55.

[1]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[2]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[3]

Wei-Xi Li, Lvqiao Liu. Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Kinetic and Related Models, 2020, 13 (5) : 1029-1046. doi: 10.3934/krm.2020036

[4]

Xiaojun Zheng, Zhongdan Huan, Jun Liu. On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022068

[5]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[6]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[7]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[8]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[9]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[10]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[11]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[12]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[15]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

[16]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[17]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[18]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[19]

Sergei Avdonin, Yuanyuan Zhao. Leaf Peeling method for the wave equation on metric tree graphs. Inverse Problems and Imaging, 2021, 15 (2) : 185-199. doi: 10.3934/ipi.2020060

[20]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]