June  2013, 2(2): 319-335. doi: 10.3934/eect.2013.2.319

Global existence for exterior problems of semilinear wave equations with the null condition in $2$D

1. 

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Received  October 2012 Revised  February 2013 Published  March 2013

In this paper we deal with the exterior problem for a system of nonlinear wave equations in two space dimensions under some geometric restriction on the obstacle. We prove a global existence result for the problem with small and smooth initial data, provided that the nonlinearity is taken to be cubic and satisfies the null condition.
Citation: Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations & Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319
References:
[1]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I,, Invent. Math., 145 (2001), 597.  doi: 10.1007/s002220100165.  Google Scholar

[2]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.  doi: 10.1080/03605309308820955.  Google Scholar

[3]

P. Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems,, Amer. J. Math., 117 (1995), 1475.  doi: 10.2307/2375027.  Google Scholar

[4]

A. Hoshiga and H. Kubo, Global solvability for systems of nonlinear wave equations with multiple speeds in two space dimensions,, Diff. Integral Eqs., 17 (2004), 593.   Google Scholar

[5]

M. Ikawa, Mixed problems for hyperbolic equations of second order,, J. Math. Soc. Japan, 20 (1968), 580.   Google Scholar

[6]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain,, J. Math. Soc. Japan, 60 (2008), 1135.   Google Scholar

[7]

S. Katayama and H. Kubo, Decay estimates of a tangential derivative to the light cone for the wave equation and their application,, SIAM J. Math. Anal., 39 (2008), 1851.  doi: 10.1137/070694417.  Google Scholar

[8]

S. Katayama, H. Kubo and S. Lucente, Almost global existence for exterior Neumann problems of semilinear wave equations in 2D,, to appear in Commun. Pure Appl. Anal., ().   Google Scholar

[9]

M. Keel, H. Smith and C. D. Sogge, On global existence for nonlinear wave equations outside of convex obstacles,, Amer. J. Math., 122 (2000), 805.   Google Scholar

[10]

M. Keel, H. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains,, J. Funct. Anal., 189 (2002), 155.  doi: 10.1006/jfan.2001.3844.  Google Scholar

[11]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[12]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, in, 23 (1986), 293.   Google Scholar

[13]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain,, in, 47-1 (2007), 47.   Google Scholar

[14]

H. Kubo, Almost global existence for nonlinear wave equations in an exterior domain in two space dimensions,, preprint, ().   Google Scholar

[15]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of noncompact support in low space dimensions,, Hokkaido Math. J., 22 (1993), 123.   Google Scholar

[16]

J. Metcalfe, Global existence for semilinear wave equations exterior to nontrapping obstacles,, Houston J. Math., 30 (2004), 259.   Google Scholar

[17]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains,, Forum Math., 17 (2005), 133.  doi: 10.1515/form.2005.17.1.133.  Google Scholar

[18]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition,, Japan. J. Math. (N.S.), 31 (2005), 391.   Google Scholar

[19]

J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations,, Invent. Math., 159 (2005), 75.  doi: 10.1007/s00222-004-0383-2.  Google Scholar

[20]

J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains,, Math. Z., 256 (2007), 521.  doi: 10.1007/s00209-006-0083-2.  Google Scholar

[21]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation,, Comm. Pure Appl. Math., 28 (1975), 229.   Google Scholar

[22]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation,, J. Differential Equations, 194 (2003), 221.  doi: 10.1016/S0022-0396(03)00189-X.  Google Scholar

[23]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order,, Math. Z., 202 (1989), 1.  doi: 10.1007/BF01180683.  Google Scholar

[24]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain,, Math. Z., 191 (1986), 165.  doi: 10.1007/BF01164023.  Google Scholar

[25]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems,, (Russian) Uspehi Mat. Nauk, 30 (1975), 3.   Google Scholar

show all references

References:
[1]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I,, Invent. Math., 145 (2001), 597.  doi: 10.1007/s002220100165.  Google Scholar

[2]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.  doi: 10.1080/03605309308820955.  Google Scholar

[3]

P. Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems,, Amer. J. Math., 117 (1995), 1475.  doi: 10.2307/2375027.  Google Scholar

[4]

A. Hoshiga and H. Kubo, Global solvability for systems of nonlinear wave equations with multiple speeds in two space dimensions,, Diff. Integral Eqs., 17 (2004), 593.   Google Scholar

[5]

M. Ikawa, Mixed problems for hyperbolic equations of second order,, J. Math. Soc. Japan, 20 (1968), 580.   Google Scholar

[6]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain,, J. Math. Soc. Japan, 60 (2008), 1135.   Google Scholar

[7]

S. Katayama and H. Kubo, Decay estimates of a tangential derivative to the light cone for the wave equation and their application,, SIAM J. Math. Anal., 39 (2008), 1851.  doi: 10.1137/070694417.  Google Scholar

[8]

S. Katayama, H. Kubo and S. Lucente, Almost global existence for exterior Neumann problems of semilinear wave equations in 2D,, to appear in Commun. Pure Appl. Anal., ().   Google Scholar

[9]

M. Keel, H. Smith and C. D. Sogge, On global existence for nonlinear wave equations outside of convex obstacles,, Amer. J. Math., 122 (2000), 805.   Google Scholar

[10]

M. Keel, H. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains,, J. Funct. Anal., 189 (2002), 155.  doi: 10.1006/jfan.2001.3844.  Google Scholar

[11]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[12]

S. Klainerman, The null condition and global existence to nonlinear wave equations,, in, 23 (1986), 293.   Google Scholar

[13]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain,, in, 47-1 (2007), 47.   Google Scholar

[14]

H. Kubo, Almost global existence for nonlinear wave equations in an exterior domain in two space dimensions,, preprint, ().   Google Scholar

[15]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of noncompact support in low space dimensions,, Hokkaido Math. J., 22 (1993), 123.   Google Scholar

[16]

J. Metcalfe, Global existence for semilinear wave equations exterior to nontrapping obstacles,, Houston J. Math., 30 (2004), 259.   Google Scholar

[17]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains,, Forum Math., 17 (2005), 133.  doi: 10.1515/form.2005.17.1.133.  Google Scholar

[18]

J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition,, Japan. J. Math. (N.S.), 31 (2005), 391.   Google Scholar

[19]

J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations,, Invent. Math., 159 (2005), 75.  doi: 10.1007/s00222-004-0383-2.  Google Scholar

[20]

J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains,, Math. Z., 256 (2007), 521.  doi: 10.1007/s00209-006-0083-2.  Google Scholar

[21]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation,, Comm. Pure Appl. Math., 28 (1975), 229.   Google Scholar

[22]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation,, J. Differential Equations, 194 (2003), 221.  doi: 10.1016/S0022-0396(03)00189-X.  Google Scholar

[23]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order,, Math. Z., 202 (1989), 1.  doi: 10.1007/BF01180683.  Google Scholar

[24]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain,, Math. Z., 191 (1986), 165.  doi: 10.1007/BF01164023.  Google Scholar

[25]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems,, (Russian) Uspehi Mat. Nauk, 30 (1975), 3.   Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[10]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[20]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]