-
Previous Article
Sensitivity analysis for a free boundary fluid-elasticity interaction
- EECT Home
- This Issue
-
Next Article
Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems
Vibrations of a damped extensible beam between two stops
1. | Facoltà di Ingegneria, Università e-Campus Italia, Via Isimbardi 10, Novedrate (CO), 22060, Italy |
2. | Dipartimento di Matematica, Università degli Studi di Brescia, Via Valotti 9, Brescia, 25133, Italy |
References:
[1] |
K. T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity, 42 (1996), 1-30.
doi: 10.1007/BF00041221. |
[2] |
J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. |
[3] |
A. Berti and M. G. Naso, Unilateral dynamic contact of two viscoelastic beams, Quart. Appl. Math., 69 (2011), 477-507. |
[4] |
E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Methods Appl. Sci., 31 (2008), 1029-1064.
doi: 10.1002/mma.957. |
[5] |
G. Bonfanti, M. Fabrizio, J. E. Muñoz Rivera and M. G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer, J. Thermal Stresses, 33 (2010), 1049-1065.
doi: 10.1080/01495739.2010.511903. |
[6] |
G. Bonfanti, J. E. Muñoz Rivera and M. G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams, J. Math. Anal. Appl., 345 (2008), 186-202.
doi: 10.1016/j.jmaa.2008.04.003. |
[7] |
G. Bonfanti and M. G. Naso, A dynamic contact problem between two thermoelastic beams, in "Applied and Industrial Mathematics in Italy III," Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 123-133.
doi: 10.1142/9789814280303_0011. |
[8] |
M. I. M. Copetti and D. A. French, Numerical approximation and error control for a thermoelastic contact problem, Appl. Numer. Math., 55 (2005), 439-457.
doi: 10.1016/j.apnum.2004.12.002. |
[9] |
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454. |
[10] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976. |
[11] |
C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems. Variational Methods and Existence Theorems," Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005.
doi: 10.1201/9781420027365. |
[12] |
M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002. |
[13] |
H. Gao and J. E. Muñoz Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68.
doi: 10.1016/S0022-0396(02)00016-5. |
[14] |
W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. |
[15] |
N. J. Hoff, The dynamics of the buckling of elastic columns, J. Appl. Mech., 18 (1951), 68-74. |
[16] |
N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. |
[17] |
J. U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity, Math. Methods Appl. Sci., 13 (1990), 55-79.
doi: 10.1002/mma.1670130106. |
[18] |
K. L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams, Math. Comput. Modelling, 34 (2001), 365-384.
doi: 10.1016/S0895-7177(01)00068-1. |
[19] |
K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110. |
[20] |
J. A. C. Martins and J. T. Oden, A numerical analysis of a class of problems in elastodynamics with friction, Comput. Methods Appl. Mech. Engrg., 40 (1983), 327-360.
doi: 10.1016/0045-7825(83)90105-6. |
[21] |
J. E. Muñoz Rivera and D. Andrade, Existence and exponential decay for contact problems in thermoelasticity, Appl. Anal., 72 (1999), 253-273.
doi: 10.1080/00036819908840741. |
[22] |
J. E. Muñoz Rivera and M. de Lacerda Oliveira, Exponential stability for a contact problem in thermoelasticity, IMA J. Appl. Math., 58 (1997), 71-82.
doi: 10.1093/imamat/58.1.71. |
[23] |
J. E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods, J. Math. Anal. Appl., 217 (1998), 423-458.
doi: 10.1006/jmaa.1997.5717. |
[24] |
J. E. Muñoz Rivera and H. Portillo Oquendo, Existence and decay to contact problems for thermoviscoelastic plates, J. Math. Anal. Appl., 233 (1999), 56-76.
doi: 10.1006/jmaa.1998.6236. |
[25] |
J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential decay for a contact problem with local damping, Funkcial. Ekvac., 42 (1999), 371-387. |
[26] |
J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111.
doi: 10.1023/A:1014091825772. |
[27] |
J. E. Muñoz Rivera and J. B. Sobrinho, Existence and uniform rates of decay for contact problems in viscoelasticity, Appl. Anal., 67 (1997), 175-199.
doi: 10.1080/00036819708840604. |
[28] |
M. Nakao and J. E. Muñoz Rivera, The contact problem in thermoviscoelastic materials, J. Math. Anal. Appl., 264 (2001), 522-545.
doi: 10.1006/jmaa.2001.7686. |
[29] |
F. G. Pfeiffer, Applications of unilateral multibody dynamics. Non-smooth mechanics, R. Soc. Lond. Phil. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 2609-2628.
doi: 10.1098/rsta.2001.0912. |
[30] |
A. Rodríguez-Arós, J. M. Viaño and M. Sofonea, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math., 108 (2007), 327-358.
doi: 10.1007/s00211-007-0117-7. |
[31] |
M. Shillor, M. Sofonea and J. J. Telega, Quasistatic viscoelastic contact with friction and wear diffusion, Quart. Appl. Math., 62 (2004), 379-399. |
[32] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[33] |
M. Sofonea, W. Han and M. Shillor, "Analysis and Approximation of Contact Problems with Adhesion or Damage," Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[34] |
M. E. Stavroulaki and G. E. Stavroulakis, Unilateral contact applications using FEM software. Mathematical modelling and numerical analysis in solid mechanics, Int. J. Appl. Math. Comput. Sci., 12 (2002), 115-125. |
[35] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. |
show all references
References:
[1] |
K. T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle, J. Elasticity, 42 (1996), 1-30.
doi: 10.1007/BF00041221. |
[2] |
J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. |
[3] |
A. Berti and M. G. Naso, Unilateral dynamic contact of two viscoelastic beams, Quart. Appl. Math., 69 (2011), 477-507. |
[4] |
E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Methods Appl. Sci., 31 (2008), 1029-1064.
doi: 10.1002/mma.957. |
[5] |
G. Bonfanti, M. Fabrizio, J. E. Muñoz Rivera and M. G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer, J. Thermal Stresses, 33 (2010), 1049-1065.
doi: 10.1080/01495739.2010.511903. |
[6] |
G. Bonfanti, J. E. Muñoz Rivera and M. G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams, J. Math. Anal. Appl., 345 (2008), 186-202.
doi: 10.1016/j.jmaa.2008.04.003. |
[7] |
G. Bonfanti and M. G. Naso, A dynamic contact problem between two thermoelastic beams, in "Applied and Industrial Mathematics in Italy III," Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 123-133.
doi: 10.1142/9789814280303_0011. |
[8] |
M. I. M. Copetti and D. A. French, Numerical approximation and error control for a thermoelastic contact problem, Appl. Numer. Math., 55 (2005), 439-457.
doi: 10.1016/j.apnum.2004.12.002. |
[9] |
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454. |
[10] |
G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics," Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-New York, 1976. |
[11] |
C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems. Variational Methods and Existence Theorems," Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005.
doi: 10.1201/9781420027365. |
[12] |
M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002. |
[13] |
H. Gao and J. E. Muñoz Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68.
doi: 10.1016/S0022-0396(02)00016-5. |
[14] |
W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. |
[15] |
N. J. Hoff, The dynamics of the buckling of elastic columns, J. Appl. Mech., 18 (1951), 68-74. |
[16] |
N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. |
[17] |
J. U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity, Math. Methods Appl. Sci., 13 (1990), 55-79.
doi: 10.1002/mma.1670130106. |
[18] |
K. L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams, Math. Comput. Modelling, 34 (2001), 365-384.
doi: 10.1016/S0895-7177(01)00068-1. |
[19] |
K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 8 (2001), 93-110. |
[20] |
J. A. C. Martins and J. T. Oden, A numerical analysis of a class of problems in elastodynamics with friction, Comput. Methods Appl. Mech. Engrg., 40 (1983), 327-360.
doi: 10.1016/0045-7825(83)90105-6. |
[21] |
J. E. Muñoz Rivera and D. Andrade, Existence and exponential decay for contact problems in thermoelasticity, Appl. Anal., 72 (1999), 253-273.
doi: 10.1080/00036819908840741. |
[22] |
J. E. Muñoz Rivera and M. de Lacerda Oliveira, Exponential stability for a contact problem in thermoelasticity, IMA J. Appl. Math., 58 (1997), 71-82.
doi: 10.1093/imamat/58.1.71. |
[23] |
J. E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods, J. Math. Anal. Appl., 217 (1998), 423-458.
doi: 10.1006/jmaa.1997.5717. |
[24] |
J. E. Muñoz Rivera and H. Portillo Oquendo, Existence and decay to contact problems for thermoviscoelastic plates, J. Math. Anal. Appl., 233 (1999), 56-76.
doi: 10.1006/jmaa.1998.6236. |
[25] |
J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential decay for a contact problem with local damping, Funkcial. Ekvac., 42 (1999), 371-387. |
[26] |
J. E. Muñoz Rivera and H. Portillo Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111.
doi: 10.1023/A:1014091825772. |
[27] |
J. E. Muñoz Rivera and J. B. Sobrinho, Existence and uniform rates of decay for contact problems in viscoelasticity, Appl. Anal., 67 (1997), 175-199.
doi: 10.1080/00036819708840604. |
[28] |
M. Nakao and J. E. Muñoz Rivera, The contact problem in thermoviscoelastic materials, J. Math. Anal. Appl., 264 (2001), 522-545.
doi: 10.1006/jmaa.2001.7686. |
[29] |
F. G. Pfeiffer, Applications of unilateral multibody dynamics. Non-smooth mechanics, R. Soc. Lond. Phil. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 2609-2628.
doi: 10.1098/rsta.2001.0912. |
[30] |
A. Rodríguez-Arós, J. M. Viaño and M. Sofonea, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math., 108 (2007), 327-358.
doi: 10.1007/s00211-007-0117-7. |
[31] |
M. Shillor, M. Sofonea and J. J. Telega, Quasistatic viscoelastic contact with friction and wear diffusion, Quart. Appl. Math., 62 (2004), 379-399. |
[32] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[33] |
M. Sofonea, W. Han and M. Shillor, "Analysis and Approximation of Contact Problems with Adhesion or Damage," Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[34] |
M. E. Stavroulaki and G. E. Stavroulakis, Unilateral contact applications using FEM software. Mathematical modelling and numerical analysis in solid mechanics, Int. J. Appl. Math. Comput. Sci., 12 (2002), 115-125. |
[35] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. |
[1] |
Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations and Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049 |
[2] |
Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure and Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371 |
[3] |
Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237 |
[4] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[5] |
Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887 |
[6] |
Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039 |
[7] |
Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393 |
[8] |
Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735 |
[9] |
Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041 |
[10] |
María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201 |
[11] |
Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 |
[12] |
Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021064 |
[13] |
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 |
[14] |
Takayuki Niimura. Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2561-2591. doi: 10.3934/dcds.2020141 |
[15] |
Yue Sun, Zhijian Yang. Strong attractors and their robustness for an extensible beam model with energy damping. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3101-3129. doi: 10.3934/dcdsb.2021175 |
[16] |
Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609 |
[17] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[18] |
Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 |
[19] |
Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483 |
[20] |
Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]