-
Previous Article
Nonlinear instability of solutions in parabolic and hyperbolic diffusion
- EECT Home
- This Issue
-
Next Article
Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces
Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system
1. | Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, CEP 21941-909, Rio de Janeiro, RJ, Brazil |
2. | Institut Elie Cartan de Lorraine, UMR 7502 UdL/CNRS/INRIA, B.P. 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France |
References:
[1] |
Phys. Rev. Lett., 31 (1973), 125-127. |
[2] |
Nonlinear Anal., 36 (1999), 1015-1035.
doi: 10.1016/S0362-546X(97)00724-4. |
[3] |
Comm. Pure Appl. Math., 32 (1979), 555-587.
doi: 10.1002/cpa.3160320405. |
[4] |
Adv. Diff. Eq., 8 (2003), 443-469. |
[5] |
Comm. Math. Phys., 143 (1992), 287-313. |
[6] |
C. R. Acad. Sci. Paris, 72 (1871), 755-759. Google Scholar |
[7] |
J. Nonlinear Science, 12 (2002), 283-318.
doi: 10.1007/s00332-002-0466-4. |
[8] |
Nonlinearity, 17 (2004), 925-952.
doi: 10.1088/0951-7715/17/3/010. |
[9] |
Appl. Math. Optim., 65 (2012), 221-251.
doi: 10.1007/s00245-011-9156-7. |
[10] |
Commun. Contemp. Math., 13 (2011), 183-189.
doi: 10.1142/S021919971100418X. |
[11] |
ESAIM Control Optim. Calc. Var., 8 (2002), 513-554.
doi: 10.1051/cocv:2002050. |
[12] |
Math. Control Signals Systems, 5 (1992), 295-312.
doi: 10.1007/BF01211563. |
[13] |
Ph.D thesis, Federal University of Rio de Janeiro, 1994. Google Scholar |
[14] |
SIAM J. Control Optimization, 15 (1977), 185-220. |
[15] |
in "European Control Conference,'' Karlsruhe, Germany, 1999. Google Scholar |
[16] |
Stud. in Appl. Math., 70 (1984), 235-258. |
[17] |
Math. Z., 41 (1936), 367-369.
doi: 10.1007/BF01180426. |
[18] |
Comm. Partial Differential Equations, 35 (2010), 707-744.
doi: 10.1080/03605300903585336. |
[19] |
Commun. Pure Appl. Anal., 3 (2004), 417-431.
doi: 10.3934/cpaa.2004.3.417. |
[20] |
J. Differential Equations, 246 (2009), 1342-1353.
doi: 10.1016/j.jde.2008.11.002. |
[21] |
Proc. Amer. Math. Soc., 135 (2007), 1515-1522.
doi: 10.1090/S0002-9939-07-08810-7. |
[22] |
F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain,, Trans. Amer. Math. Soc., (). Google Scholar |
[23] |
Tome 1, Masson, Paris, 1988. Google Scholar |
[24] |
Differential Integral Equations, 22 (2009), 53-68. |
[25] |
Quart. Appl. Math., 69 (2011), 723-746.
doi: 10.1090/S0033-569X-2011-01245-6. |
[26] |
Math. Methods Appl. Sci., 30 (2007), 1419-1435.
doi: 10.1002/mma.847. |
[27] |
Quart. Appl. Math., 60 (2002), 111-129. |
[28] |
in "Mathematical and Numerical Aspects of Wave Propagation" (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, (2000), 1020-1024. |
[29] |
Commun. Contemp. Math., 11 (2009), 799-827.
doi: 10.1142/S0219199709003600. |
[30] |
Discrete Contin. Dyn. Syst., 24 (2009), 273-313.
doi: 10.3934/dcds.2009.24.273. |
[31] |
Math. Control Relat. Fields, 1 (2011), 353-389.
doi: 10.3934/mcrf.2011.1.353. |
[32] |
ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.
doi: 10.1051/cocv:2005015. |
[33] |
Systems Control Lett., 57 (2008), 595-601.
doi: 10.1016/j.sysconle.2007.12.009. |
[34] |
Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1511-1535.
doi: 10.3934/dcdsb.2010.14.1511. |
[35] |
A. F. Pazoto and G. R. Souza, Uniform stabilization of a nonlinear dispersive system,, Quart. Appl. Math., (). Google Scholar |
[36] |
IEEE Trans. Automat. Control, 47 (2002), 594-609.
doi: 10.1109/9.995037. |
[37] |
Systems Control Lett., 52 (2004), 167-178.
doi: 10.1016/j.sysconle.2003.11.008. |
[38] |
ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[39] |
SIAM J. Control Optim., 39 (2000), 331-351.
doi: 10.1137/S0363012999353229. |
[40] |
Comput. Appl. Math., 21 (2002), 355-367. |
[41] |
ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[42] |
SIAM J. Control Optim., 45 (2006), 927-956.
doi: 10.1137/050631409. |
[43] |
J. Syst. Sci. Complex., 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2. |
[44] |
J. Differential Equations, 254 (2013), 141-178.
doi: 10.1016/j.jde.2012.08.014. |
[45] |
M2AN Math. Model. Numer. Anal., 34 (2000), 501-523.
doi: 10.1051/m2an:2000153. |
[46] |
Ph.D thesis, Federal University of Rio de Janeiro, 2001. Google Scholar |
show all references
References:
[1] |
Phys. Rev. Lett., 31 (1973), 125-127. |
[2] |
Nonlinear Anal., 36 (1999), 1015-1035.
doi: 10.1016/S0362-546X(97)00724-4. |
[3] |
Comm. Pure Appl. Math., 32 (1979), 555-587.
doi: 10.1002/cpa.3160320405. |
[4] |
Adv. Diff. Eq., 8 (2003), 443-469. |
[5] |
Comm. Math. Phys., 143 (1992), 287-313. |
[6] |
C. R. Acad. Sci. Paris, 72 (1871), 755-759. Google Scholar |
[7] |
J. Nonlinear Science, 12 (2002), 283-318.
doi: 10.1007/s00332-002-0466-4. |
[8] |
Nonlinearity, 17 (2004), 925-952.
doi: 10.1088/0951-7715/17/3/010. |
[9] |
Appl. Math. Optim., 65 (2012), 221-251.
doi: 10.1007/s00245-011-9156-7. |
[10] |
Commun. Contemp. Math., 13 (2011), 183-189.
doi: 10.1142/S021919971100418X. |
[11] |
ESAIM Control Optim. Calc. Var., 8 (2002), 513-554.
doi: 10.1051/cocv:2002050. |
[12] |
Math. Control Signals Systems, 5 (1992), 295-312.
doi: 10.1007/BF01211563. |
[13] |
Ph.D thesis, Federal University of Rio de Janeiro, 1994. Google Scholar |
[14] |
SIAM J. Control Optimization, 15 (1977), 185-220. |
[15] |
in "European Control Conference,'' Karlsruhe, Germany, 1999. Google Scholar |
[16] |
Stud. in Appl. Math., 70 (1984), 235-258. |
[17] |
Math. Z., 41 (1936), 367-369.
doi: 10.1007/BF01180426. |
[18] |
Comm. Partial Differential Equations, 35 (2010), 707-744.
doi: 10.1080/03605300903585336. |
[19] |
Commun. Pure Appl. Anal., 3 (2004), 417-431.
doi: 10.3934/cpaa.2004.3.417. |
[20] |
J. Differential Equations, 246 (2009), 1342-1353.
doi: 10.1016/j.jde.2008.11.002. |
[21] |
Proc. Amer. Math. Soc., 135 (2007), 1515-1522.
doi: 10.1090/S0002-9939-07-08810-7. |
[22] |
F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain,, Trans. Amer. Math. Soc., (). Google Scholar |
[23] |
Tome 1, Masson, Paris, 1988. Google Scholar |
[24] |
Differential Integral Equations, 22 (2009), 53-68. |
[25] |
Quart. Appl. Math., 69 (2011), 723-746.
doi: 10.1090/S0033-569X-2011-01245-6. |
[26] |
Math. Methods Appl. Sci., 30 (2007), 1419-1435.
doi: 10.1002/mma.847. |
[27] |
Quart. Appl. Math., 60 (2002), 111-129. |
[28] |
in "Mathematical and Numerical Aspects of Wave Propagation" (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, (2000), 1020-1024. |
[29] |
Commun. Contemp. Math., 11 (2009), 799-827.
doi: 10.1142/S0219199709003600. |
[30] |
Discrete Contin. Dyn. Syst., 24 (2009), 273-313.
doi: 10.3934/dcds.2009.24.273. |
[31] |
Math. Control Relat. Fields, 1 (2011), 353-389.
doi: 10.3934/mcrf.2011.1.353. |
[32] |
ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.
doi: 10.1051/cocv:2005015. |
[33] |
Systems Control Lett., 57 (2008), 595-601.
doi: 10.1016/j.sysconle.2007.12.009. |
[34] |
Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1511-1535.
doi: 10.3934/dcdsb.2010.14.1511. |
[35] |
A. F. Pazoto and G. R. Souza, Uniform stabilization of a nonlinear dispersive system,, Quart. Appl. Math., (). Google Scholar |
[36] |
IEEE Trans. Automat. Control, 47 (2002), 594-609.
doi: 10.1109/9.995037. |
[37] |
Systems Control Lett., 52 (2004), 167-178.
doi: 10.1016/j.sysconle.2003.11.008. |
[38] |
ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[39] |
SIAM J. Control Optim., 39 (2000), 331-351.
doi: 10.1137/S0363012999353229. |
[40] |
Comput. Appl. Math., 21 (2002), 355-367. |
[41] |
ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[42] |
SIAM J. Control Optim., 45 (2006), 927-956.
doi: 10.1137/050631409. |
[43] |
J. Syst. Sci. Complex., 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2. |
[44] |
J. Differential Equations, 254 (2013), 141-178.
doi: 10.1016/j.jde.2012.08.014. |
[45] |
M2AN Math. Model. Numer. Anal., 34 (2000), 501-523.
doi: 10.1051/m2an:2000153. |
[46] |
Ph.D thesis, Federal University of Rio de Janeiro, 2001. Google Scholar |
[1] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[2] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[3] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[4] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[5] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384 |
[6] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[7] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[8] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[9] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[10] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[11] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[12] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[13] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[14] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[15] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[16] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[17] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[18] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[19] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[20] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]