\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system

Abstract / Introduction Related Papers Cited by
  • This paper is concerned with the exact controllability problem for a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to one-dimensional horizontal motion. We take as fluid model a Boussinesq system of KdV-KdV type, and as control the acceleration of the tank. We derive for the linearized system an exact controllability result in small time in an appropriate space.
    Mathematics Subject Classification: Primary: 93B05, 35Q53; Secondary: 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Ablowitz, D. Kaup, A. Newell and H. Segur, Nonlinear-evolution equations of physical significance, Phys. Rev. Lett., 31 (1973), 125-127.

    [2]

    E. Alarcon, J. Angulo and J. F. Montenegro, Stability and instability of solitary waves for a nonlinear dispersive system, Nonlinear Anal., 36 (1999), 1015-1035.doi: 10.1016/S0362-546X(97)00724-4.

    [3]

    J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semilinear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587.doi: 10.1002/cpa.3160320405.

    [4]

    E. Bisognin, V. Bisognin and G. Perla Menzala, Exponential stabilization of a coupled system of Korteweg-de Vries equations with localized damping, Adv. Diff. Eq., 8 (2003), 443-469.

    [5]

    J. Bona, G. Ponce, J.-C. Saut and M. M. Tom, A model system for strong interaction between internal solitary waves, Comm. Math. Phys., 143 (1992), 287-313.

    [6]

    J. V. Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 72 (1871), 755-759.

    [7]

    J. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Science, 12 (2002), 283-318.doi: 10.1007/s00332-002-0466-4.

    [8]

    J. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory, Nonlinearity, 17 (2004), 925-952.doi: 10.1088/0951-7715/17/3/010.

    [9]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti, A. Faminskii and F. Natali, Decay of solutions to damped Korteweg-de Vries type equation, Appl. Math. Optim., 65 (2012), 221-251.doi: 10.1007/s00245-011-9156-7.

    [10]

    E. Cerpa and A. F. Pazoto, A note on the paper "On the controllability of a coupled system of two Korteweg-de Vries equations'' [MR2561938], Commun. Contemp. Math., 13 (2011), 183-189.doi: 10.1142/S021919971100418X.

    [11]

    J.-M. Coron, Local Controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var., 8 (2002), 513-554.doi: 10.1051/cocv:2002050.

    [12]

    J.-M. Coron, Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems, 5 (1992), 295-312.doi: 10.1007/BF01211563.

    [13]

    M. Davila, "On the Unique Continuation Property for a Coupled System of Korteweg-de Vries Equations," Ph.D thesis, Federal University of Rio de Janeiro, 1994.

    [14]

    S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optimization, 15 (1977), 185-220.

    [15]

    F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, in "European Control Conference,'' Karlsruhe, Germany, 1999.

    [16]

    J. A. Gear and R. Grimshaw, Weak and strong interaction between internal solitary waves, Stud. in Appl. Math., 70 (1984), 235-258.

    [17]

    A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-369.doi: 10.1007/BF01180426.

    [18]

    C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35 (2010), 707-744.doi: 10.1080/03605300903585336.

    [19]

    F. Linares and M. Panthee, On the Cauchy problem for a coupled system of KdV equations, Commun. Pure Appl. Anal., 3 (2004), 417-431.doi: 10.3934/cpaa.2004.3.417.

    [20]

    F. Linares and A. F. Pazoto, Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane, J. Differential Equations, 246 (2009), 1342-1353.doi: 10.1016/j.jde.2008.11.002.

    [21]

    F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc., 135 (2007), 1515-1522.doi: 10.1090/S0002-9939-07-08810-7.

    [22]

    F. Linares and L. RosierControl and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., to appear.

    [23]

    J.-L. Lions, "Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués," Tome 1, Masson, Paris, 1988.

    [24]

    C. P. Massarolo and A. F. Pazoto, Uniform stabilization of a nonlinear coupled system of Korteweg-de Vries equation as a singular limit of the Kuramoto-Sivashinsky system, Differential Integral Equations, 22 (2009), 53-68.

    [25]

    G. P. Menzala, C. P. Massarolo and A. F. Pazoto, Uniform stabilization of a class of KdV equations with localized damping, Quart. Appl. Math., 69 (2011), 723-746.doi: 10.1090/S0033-569X-2011-01245-6.

    [26]

    C. P. Massarolo, G. P. Menzala and A. F. Pazoto, On the uniform decay for the Korteweg-de Vries equation with weak damping, Math. Methods Appl. Sci., 30 (2007), 1419-1435.doi: 10.1002/mma.847.

    [27]

    G. P. Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.

    [28]

    S. Micu and J. H. Ortega, On the controllability of a linear coupled system of Korteweg-de Vries equations, in "Mathematical and Numerical Aspects of Wave Propagation" (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, (2000), 1020-1024.

    [29]

    S. Micu, J. H. Ortega and A. F. Pazoto, On the controllability of a nonlinear coupled system of Korteweg-de Vries equations, Commun. Contemp. Math., 11 (2009), 799-827.doi: 10.1142/S0219199709003600.

    [30]

    S. Micu, J. H. Ortega, L. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.doi: 10.3934/dcds.2009.24.273.

    [31]

    D. Nina, A. F. Pazoto and L. Rosier, Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain, Math. Control Relat. Fields, 1 (2011), 353-389.doi: 10.3934/mcrf.2011.1.353.

    [32]

    A. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.doi: 10.1051/cocv:2005015.

    [33]

    A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, Systems Control Lett., 57 (2008), 595-601.doi: 10.1016/j.sysconle.2007.12.009.

    [34]

    A. F. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1511-1535.doi: 10.3934/dcdsb.2010.14.1511.

    [35]

    A. F. Pazoto and G. R. SouzaUniform stabilization of a nonlinear dispersive system, Quart. Appl. Math., to appear.

    [36]

    N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems, IEEE Trans. Automat. Control, 47 (2002), 594-609.doi: 10.1109/9.995037.

    [37]

    C. Prieur and J. de Halleux, Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations, Systems Control Lett., 52 (2004), 167-178.doi: 10.1016/j.sysconle.2003.11.008.

    [38]

    L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.doi: 10.1051/cocv:1997102.

    [39]

    L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim., 39 (2000), 331-351.doi: 10.1137/S0363012999353229.

    [40]

    L. Rosier, A fundamental solution supported in a strip for a dispersive equation. Special issue in memory of Jacques-Louis Lions, Comput. Appl. Math., 21 (2002), 355-367.

    [41]

    L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.doi: 10.1051/cocv:2004012.

    [42]

    L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927-956.doi: 10.1137/050631409.

    [43]

    L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: Recent progresses, J. Syst. Sci. Complex., 22 (2009), 647-682.doi: 10.1007/s11424-009-9194-2.

    [44]

    L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141-178.doi: 10.1016/j.jde.2012.08.014.

    [45]

    J.-C. Saut and N. Tzvetkov, On a model system for the oblique interaction of internal gravity waves, M2AN Math. Model. Numer. Anal., 34 (2000), 501-523.doi: 10.1051/m2an:2000153.

    [46]

    O. P. Vera Villagran, "Gain of Regularity of the Solutions of a Coupled System of Equations of Korteweg-de Vries Type," Ph.D thesis, Federal University of Rio de Janeiro, 2001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return