• Previous Article
    Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III
  • EECT Home
  • This Issue
  • Next Article
    Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system
June  2013, 2(2): 403-422. doi: 10.3934/eect.2013.2.403

Nonlinear instability of solutions in parabolic and hyperbolic diffusion

1. 

Department of Mathematics, United States Naval Academy, Annapolis, MD 21402, United States

2. 

Department of Mathematics, University of Nebraska-Lincoln, Avery Hall 239, Lincoln, NE 68588

Received  November 2012 Revised  December 2012 Published  March 2013

We consider semilinear evolution equations of the form $a(t)\partial_{tt}u + b(t) \partial_t u + Lu = f(x,u)$ and $b(t) \partial_t u + Lu = f(x,u),$ with possibly unbounded $a(t)$ and possibly sign-changing damping coefficient $b(t)$, and determine precise conditions for which linear instability of the steady state solutions implies nonlinear instability. More specifically, we prove that linear instability with an eigenfunction of fixed sign gives rise to nonlinear instability by either exponential growth or finite-time blow-up. We then discuss a few examples to which our main theorem is immediately applicable, including evolution equations with supercritical and exponential nonlinearities.
Citation: Stephen Pankavich, Petronela Radu. Nonlinear instability of solutions in parabolic and hyperbolic diffusion. Evolution Equations & Control Theory, 2013, 2 (2) : 403-422. doi: 10.3934/eect.2013.2.403
References:
[1]

Elvise Berchio, Alberto Farina, Alberto Ferrero and Filippo Gazzola, Existence and stability of entire solutions to a semilinear fourth order elliptic problem,, J. Differential Equations, 252 (2012), 2596.  doi: 10.1016/j.jde.2011.09.028.  Google Scholar

[2]

M. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée,, Comptes Rendus de l'Academie des Sciences Paris, 247 (1958), 431.   Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. Journal, 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

C. de Silva, "Vibration and Shock Handbook,", Mechanical Engineering, (2005).   Google Scholar

[5]

G. Fragnelli and D. Mugnai, Stability of solutions for nonlinear wave equations with a positive-negative damping,, Discrete and Continuous Dynamical Systems Series S, 4 (2011), 615.  doi: 10.3934/dcdss.2011.4.615.  Google Scholar

[6]

G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations,, SIAM J. Control Optim., 47 (2008), 2520.  doi: 10.1137/070689735.  Google Scholar

[7]

R. Glassey, Blow-up theorems for nonlinear wave equations,, Math. Z., 132 (1973), 183.   Google Scholar

[8]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[9]

C. Gui, W. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbbR^n$,, Comm. Pure Appl. Math., 45 (1992), 1153.  doi: 10.1002/cpa.3160450906.  Google Scholar

[10]

Y. Han and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves,, Bull. Sci. Math., 124 (2000), 415.  doi: 10.1016/S0007-4497(00)00141-X.  Google Scholar

[11]

L. Hsiao and Tai-Ping Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, Comm. Math. Phys., 143 (1992), 599.   Google Scholar

[12]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl., 16 (1963), 305.   Google Scholar

[13]

P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic equation,, Nonlinearity, 22 (2009), 1653.  doi: 10.1088/0951-7715/22/7/009.  Google Scholar

[14]

P. Karageorgis and W. Strauss, Instability of steady states for nonlinear wave and heat equations,, J. Differential Equations, 241 (2007), 184.  doi: 10.1016/j.jde.2007.06.006.  Google Scholar

[15]

M. Kawashita, H. Nakazawa and H. Soga, Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy,, Nagoya Math. J., 174 (2004), 115.   Google Scholar

[16]

S. Konabe and T. Nikuni, Coarse-grained finite-temperature theory for the Bose condensate in optical lattices,, Journal of Low Temperature Physics, 150 (2008), 12.   Google Scholar

[17]

A. Lazer and P. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Review, 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[18]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p = 0$ in $\mathbbR^n$,, J. Differential Equations, 95 (1992), 304.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[19]

E. Lieb and M. Loss, "Analysis,", $2^{nd}$ edition, 14 (2001).   Google Scholar

[20]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (): 169.   Google Scholar

[21]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, J. Differential Equations, 131 (1996), 171.  doi: 10.1006/jdeq.1996.0159.  Google Scholar

[22]

P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 609.  doi: 10.3934/dcdss.2009.2.609.  Google Scholar

[23]

P. Radu, G. Todorova and B. Yordanov, Diffusion phenomenon in Hilbert spaces and applications,, J. Differential Equations, 250 (2011), 4200.  doi: 10.1016/j.jde.2011.01.024.  Google Scholar

[24]

P. Reverberi, P. Bagnerini, L. Maga and A. G. Bruzzone, On the non-linear Maxwell-Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves,, International Journal of heat and Mass Transfer, 51 (2008), 5327.   Google Scholar

[25]

J. Shatah and W. Strauss, Spectral condition for instability,, in, 255 (2000), 189.  doi: 10.1090/conm/255/03982.  Google Scholar

[26]

B. Simon, Schrödinger semigroups,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447.  doi: 10.1090/S0273-0979-1982-15041-8.  Google Scholar

[27]

G. Somieski, Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods,, Aerosp. Sci. Technolo., 1 (1997), 545.   Google Scholar

[28]

P. Souplet and Q. Zhang, Stability for semilinear parabolic equations with decaying potentials in $\mathbbR^n$ and dynamical approach to the existence of ground states,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 683.  doi: 10.1016/S0294-1449(02)00098-7.  Google Scholar

[29]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[30]

P. Vernotte, Les paradoxes de la théorie continue de l'équation de la chaleur,, Comptes Rendus Acad. Sci., 246 (1958), 3154.   Google Scholar

[31]

J. Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation,, J. Differential Equations, 232 (2007), 74.  doi: 10.1016/j.jde.2006.06.004.  Google Scholar

[32]

B. Yordanov and Q. Zhang, Finite-time blow up for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

show all references

References:
[1]

Elvise Berchio, Alberto Farina, Alberto Ferrero and Filippo Gazzola, Existence and stability of entire solutions to a semilinear fourth order elliptic problem,, J. Differential Equations, 252 (2012), 2596.  doi: 10.1016/j.jde.2011.09.028.  Google Scholar

[2]

M. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée,, Comptes Rendus de l'Academie des Sciences Paris, 247 (1958), 431.   Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. Journal, 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

C. de Silva, "Vibration and Shock Handbook,", Mechanical Engineering, (2005).   Google Scholar

[5]

G. Fragnelli and D. Mugnai, Stability of solutions for nonlinear wave equations with a positive-negative damping,, Discrete and Continuous Dynamical Systems Series S, 4 (2011), 615.  doi: 10.3934/dcdss.2011.4.615.  Google Scholar

[6]

G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations,, SIAM J. Control Optim., 47 (2008), 2520.  doi: 10.1137/070689735.  Google Scholar

[7]

R. Glassey, Blow-up theorems for nonlinear wave equations,, Math. Z., 132 (1973), 183.   Google Scholar

[8]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[9]

C. Gui, W. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbbR^n$,, Comm. Pure Appl. Math., 45 (1992), 1153.  doi: 10.1002/cpa.3160450906.  Google Scholar

[10]

Y. Han and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves,, Bull. Sci. Math., 124 (2000), 415.  doi: 10.1016/S0007-4497(00)00141-X.  Google Scholar

[11]

L. Hsiao and Tai-Ping Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, Comm. Math. Phys., 143 (1992), 599.   Google Scholar

[12]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations,, Comm. Pure Appl., 16 (1963), 305.   Google Scholar

[13]

P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic equation,, Nonlinearity, 22 (2009), 1653.  doi: 10.1088/0951-7715/22/7/009.  Google Scholar

[14]

P. Karageorgis and W. Strauss, Instability of steady states for nonlinear wave and heat equations,, J. Differential Equations, 241 (2007), 184.  doi: 10.1016/j.jde.2007.06.006.  Google Scholar

[15]

M. Kawashita, H. Nakazawa and H. Soga, Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy,, Nagoya Math. J., 174 (2004), 115.   Google Scholar

[16]

S. Konabe and T. Nikuni, Coarse-grained finite-temperature theory for the Bose condensate in optical lattices,, Journal of Low Temperature Physics, 150 (2008), 12.   Google Scholar

[17]

A. Lazer and P. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Review, 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[18]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p = 0$ in $\mathbbR^n$,, J. Differential Equations, 95 (1992), 304.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[19]

E. Lieb and M. Loss, "Analysis,", $2^{nd}$ edition, 14 (2001).   Google Scholar

[20]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (): 169.   Google Scholar

[21]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, J. Differential Equations, 131 (1996), 171.  doi: 10.1006/jdeq.1996.0159.  Google Scholar

[22]

P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 609.  doi: 10.3934/dcdss.2009.2.609.  Google Scholar

[23]

P. Radu, G. Todorova and B. Yordanov, Diffusion phenomenon in Hilbert spaces and applications,, J. Differential Equations, 250 (2011), 4200.  doi: 10.1016/j.jde.2011.01.024.  Google Scholar

[24]

P. Reverberi, P. Bagnerini, L. Maga and A. G. Bruzzone, On the non-linear Maxwell-Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves,, International Journal of heat and Mass Transfer, 51 (2008), 5327.   Google Scholar

[25]

J. Shatah and W. Strauss, Spectral condition for instability,, in, 255 (2000), 189.  doi: 10.1090/conm/255/03982.  Google Scholar

[26]

B. Simon, Schrödinger semigroups,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447.  doi: 10.1090/S0273-0979-1982-15041-8.  Google Scholar

[27]

G. Somieski, Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods,, Aerosp. Sci. Technolo., 1 (1997), 545.   Google Scholar

[28]

P. Souplet and Q. Zhang, Stability for semilinear parabolic equations with decaying potentials in $\mathbbR^n$ and dynamical approach to the existence of ground states,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 683.  doi: 10.1016/S0294-1449(02)00098-7.  Google Scholar

[29]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[30]

P. Vernotte, Les paradoxes de la théorie continue de l'équation de la chaleur,, Comptes Rendus Acad. Sci., 246 (1958), 3154.   Google Scholar

[31]

J. Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation,, J. Differential Equations, 232 (2007), 74.  doi: 10.1016/j.jde.2006.06.004.  Google Scholar

[32]

B. Yordanov and Q. Zhang, Finite-time blow up for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

[1]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[2]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[3]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[4]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[5]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[6]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[7]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[8]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[9]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[10]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[11]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[12]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[13]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[14]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[15]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[16]

Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137

[17]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[18]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[19]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[20]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]