Citation: |
[1] |
F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.doi: 10.1016/S0022-0396(03)00185-2. |
[2] |
C. Cattaneo, Sulla conduzione del calore, Atti. Sem. Mat. Fis. Univ. Modena., 3 (1949), 83-101. |
[3] |
D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51 (1998), 705-729.doi: 10.1115/1.3098984. |
[4] |
M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Lett., 22 (2009), 1374-1379.doi: 10.1016/j.aml.2009.03.010. |
[5] |
A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Society London. A,, 432 (1991), 171-194.doi: 10.1098/rspa.1991.0012. |
[6] |
A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.doi: 10.1080/01495739208946136. |
[7] |
K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Mod. Meth. Appl. Sci., 18 (2008), 647-667.doi: 10.1142/S0218202508002802. |
[8] |
K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Mod. Meth. Appl. Sci., 18 (2008), 1001-1025.doi: 10.1142/S0218202508002930. |
[9] |
R. Ikehata, Diffusion phenomenon for linear dissipative wave equations in an exterior domain, J. Differential Equations, 186 (2002), 633-651.doi: 10.1016/S0022-0396(02)00008-6. |
[10] |
R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem, Math. Meth. Appl. Sci., 27 (2004), 865-889.doi: 10.1002/mma.476. |
[11] |
P. M Jordan, W. Dai and R. E Mickens, A note on the delayed heat equation: Instability with respect to initial data, Mechanics Research Communications, 35 (2008), 414-420.doi: 10.1016/j.mechrescom.2008.04.001. |
[12] |
D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Physics, 61 (1989), 41-73.doi: 10.1103/RevModPhys.61.41. |
[13] |
S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534.doi: 10.1002/mma.1049. |
[14] |
S. A. Messaoudi and B. Said-Houari, Exponential stability in one-dimensional non-linear thermoelasticity with second sound, Math. Methods Appl. Sci., 28 (2005), 205-232.doi: 10.1002/mma.556. |
[15] |
S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 348 (2008), 298-307.doi: 10.1016/j.jmaa.2008.07.036. |
[16] |
S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system with history in thermoelasticity of type III, Advances in Differential Equations, 14 (2009), 375-400. |
[17] |
R. Quintanilla and R. Racke, Stability in thermoelasticity of type III, Discrete and Continuous Dynamical Systems B, 3 (2003), 383-400.doi: 10.3934/dcdsb.2003.3.383. |
[18] |
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977-1001 (electronic).doi: 10.1137/05062860X. |
[19] |
R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems," Aspects of Mathematics, E19, Friedrich Vieweg and Sohn, Braunschweig, 1992. |
[20] |
R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Methods. Appl. Sci., 25 (2002), 409-441.doi: 10.1002/mma.298. |
[21] |
R. Racke and Y. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound, J. Hyperbolic Differ. Equ., 5 (2008), 25-43.doi: 10.1142/S021989160800143X. |
[22] |
M. Reissig and G. Y. Wang, Cauchy problems for linear thermoelastic systems of type III in one space variable, Math. Methods Appl. Sci., 28 (2005), 1359-1381.doi: 10.1002/mma.619. |
[23] |
J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.doi: 10.1016/S0022-247X(02)00436-5. |
[24] |
J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502.doi: 10.1016/j.jmaa.2007.07.012. |
[25] |
B. Said-Houari and A. Kasimov, Decay property of Timoshenko system in thermoelasticity, Math. Methods. Appl. Sci., 35 (2012), 314-333.doi: 10.1002/mma.1569. |
[26] |
H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.doi: 10.1007/s00205-009-0220-2. |
[27] |
M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727-742. |
[28] |
D. Y. Tzou, Thermal shock phenomena under high-rate response in solids, Annual Review of Heat Transfer, 4 (1992), 111-185. |
[29] |
D. Y. Tzou, A unified field approach for heat conduction from macro to micro-scales, J. Heat Transfer, 117 (1995), 8-16.doi: 10.1115/1.2822329. |
[30] |
Y.-G. Wang and L. Yang, $L^p$-$L^q$ decay estimates for Cauchy problems of linear thermoelastic systems with second sound in three dimensions, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 189-207.doi: 10.1017/S0308210500004510. |
[31] |
X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III, Commun. Contemp. Math., 5 (2003), 25-83.doi: 10.1142/S0219199703000896. |