September  2013, 2(3): 441-459. doi: 10.3934/eect.2013.2.441

Carleman Estimates and null controllability of coupled degenerate systems

1. 

Département de Mathématiques, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, Marrakech, 40000, B.P. 2390,, Morocco

2. 

Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 25030 Besançon Cedex, France

3. 

Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Labo. MISI, Université Hassan 1er Settat 26000, B.P. 577, Morocco

4. 

Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech 40000, B.P. 2390, Morocco

Received  May 2012 Revised  June 2013 Published  July 2013

In this paper, we study the null controllability of weakly degenerate parabolic systems with two different diffusion coefficients and one control force. To obtain this aim, we had to develop new global Carleman estimates for a degenerate parabolic equation, with weight functions different from the ones of [2], [10] and [31].
Citation: El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations and Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441
References:
[1]

E. M. Ait Benhassi, F. Ammar Khodja, A. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems, Portugal. Math., 68 (2011), 345-367. doi: 10.4171/PM/1895.

[2]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. evol. equ., 6 (2006), 161-204. doi: 10.1007/s00028-006-0222-6.

[3]

F. Ammar Khodja, A. Benabdellah and C. Dupaix, Null-controllability for some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943. doi: 10.1016/j.jmaa.2005.07.060.

[4]

F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 42 (2003), 1661-1680. doi: 10.1137/S0363012902417826.

[5]

F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11 (2005), 426-448. doi: 10.1051/cocv:2005013.

[6]

V. R. Cabanillas, S. B. Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optimization Theory and Applications, 110 (2001), 245-264. doi: 10.1023/A:1017515027783.

[7]

M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36. doi: 10.1007/PL00005959.

[8]

P. Cannarsa and L. De Teresa, Controllability of 1-d coupled degenerate parabolic equations, Electron. J. Differential Equations, 1-21.

[9]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 1-20.

[10]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM, J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X.

[11]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., 320 (2006), 804-818. doi: 10.1016/j.jmaa.2005.07.006.

[12]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 607-635. doi: 10.3934/cpaa.2004.3.607.

[13]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.

[14]

P. Cannarsa, J. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., 91 (2012), 1409-1425. doi: 10.1080/00036811.2011.639766.

[15]

L. De Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72. doi: 10.1080/03605300008821507.

[16]

L. De Teresa and E. Zuazua, Approximate controllability of the semilinear heat equation in unbounded domains, Nonlinear Analysis TMA, 37 (1999), 1059-1090. doi: 10.1016/S0362-546X(98)00085-6.

[17]

K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Quations," Springer-Verlag, New York, 2000.

[18]

C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburg, 125 (1995), 31-61. doi: 10.1017/S0308210500030742.

[19]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292.

[20]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to control theory of parabolic equations, Quarterly of applied Maths, 32 (1974), 45-69.

[21]

E. Fernandez-Cara, Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., 2 (1997), 87-103. doi: 10.1051/cocv:1997104.

[22]

E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Annales de l'Institut Henry Poincaré, Analyse non Linéaire, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[23]

A. V. Fursikov and O. Y. Imanuvilov, "Controllability of Evolution Equations," Lectures Notes Series 34, Seoul National University Research Center, Seoul, 1996.

[24]

M. Gonzalez-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[25]

M. Gonzalez-Burgos and R. Perez-Garcia, Controllability of some coupled parabolic systems by one control force, C. R. Math. Acad. Sci. Paris, 340 (2005), 125-130. doi: 10.1016/j.crma.2004.11.025.

[26]

M. Gonzalez-Burgos and R. Perez-Garcia, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162.

[27]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135.

[28]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. in PDE, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[29]

X. Liu, H. Gao and P. Lin, Null controllability of a cascade system of degenerate parabolic equations, Acta Math. Sci. Ser. A Chin. Ed., 28 (2008), 985-996.

[30]

A. Lopez, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl., 79 (2000), 741-808. doi: 10.1016/S0021-7824(99)00144-0.

[31]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6.

[32]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659. doi: 10.1090/S0002-9947-00-02665-9.

[33]

B. Opic and A. Kufner, "Hardy-Type Inequalities," Longman Scientific and Technical, Harlow, UK, 1990.

[34]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-221.

[35]

D. Tataru, A priori estimates of Carleman's type in domains with boundary, J. Math. Pures et Appliquées, 73 (1994), 355-387.

[36]

E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearites, Control Cybernet., 28 (1999), 665-683.

show all references

References:
[1]

E. M. Ait Benhassi, F. Ammar Khodja, A. Hajjaj and L. Maniar, Null controllability of degenerate parabolic cascade systems, Portugal. Math., 68 (2011), 345-367. doi: 10.4171/PM/1895.

[2]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. evol. equ., 6 (2006), 161-204. doi: 10.1007/s00028-006-0222-6.

[3]

F. Ammar Khodja, A. Benabdellah and C. Dupaix, Null-controllability for some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943. doi: 10.1016/j.jmaa.2005.07.060.

[4]

F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 42 (2003), 1661-1680. doi: 10.1137/S0363012902417826.

[5]

F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11 (2005), 426-448. doi: 10.1051/cocv:2005013.

[6]

V. R. Cabanillas, S. B. Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optimization Theory and Applications, 110 (2001), 245-264. doi: 10.1023/A:1017515027783.

[7]

M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57 (1998), 1-36. doi: 10.1007/PL00005959.

[8]

P. Cannarsa and L. De Teresa, Controllability of 1-d coupled degenerate parabolic equations, Electron. J. Differential Equations, 1-21.

[9]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 1-20.

[10]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM, J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X.

[11]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., 320 (2006), 804-818. doi: 10.1016/j.jmaa.2005.07.006.

[12]

P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 607-635. doi: 10.3934/cpaa.2004.3.607.

[13]

P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.

[14]

P. Cannarsa, J. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., 91 (2012), 1409-1425. doi: 10.1080/00036811.2011.639766.

[15]

L. De Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72. doi: 10.1080/03605300008821507.

[16]

L. De Teresa and E. Zuazua, Approximate controllability of the semilinear heat equation in unbounded domains, Nonlinear Analysis TMA, 37 (1999), 1059-1090. doi: 10.1016/S0362-546X(98)00085-6.

[17]

K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Quations," Springer-Verlag, New York, 2000.

[18]

C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburg, 125 (1995), 31-61. doi: 10.1017/S0308210500030742.

[19]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292.

[20]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to control theory of parabolic equations, Quarterly of applied Maths, 32 (1974), 45-69.

[21]

E. Fernandez-Cara, Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., 2 (1997), 87-103. doi: 10.1051/cocv:1997104.

[22]

E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Annales de l'Institut Henry Poincaré, Analyse non Linéaire, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[23]

A. V. Fursikov and O. Y. Imanuvilov, "Controllability of Evolution Equations," Lectures Notes Series 34, Seoul National University Research Center, Seoul, 1996.

[24]

M. Gonzalez-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[25]

M. Gonzalez-Burgos and R. Perez-Garcia, Controllability of some coupled parabolic systems by one control force, C. R. Math. Acad. Sci. Paris, 340 (2005), 125-130. doi: 10.1016/j.crma.2004.11.025.

[26]

M. Gonzalez-Burgos and R. Perez-Garcia, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 46 (2006), 123-162.

[27]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135.

[28]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. in PDE, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[29]

X. Liu, H. Gao and P. Lin, Null controllability of a cascade system of degenerate parabolic equations, Acta Math. Sci. Ser. A Chin. Ed., 28 (2008), 985-996.

[30]

A. Lopez, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl., 79 (2000), 741-808. doi: 10.1016/S0021-7824(99)00144-0.

[31]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6.

[32]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659. doi: 10.1090/S0002-9947-00-02665-9.

[33]

B. Opic and A. Kufner, "Hardy-Type Inequalities," Longman Scientific and Technical, Harlow, UK, 1990.

[34]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-221.

[35]

D. Tataru, A priori estimates of Carleman's type in domains with boundary, J. Math. Pures et Appliquées, 73 (1994), 355-387.

[36]

E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearites, Control Cybernet., 28 (1999), 665-683.

[1]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations and Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080

[2]

R. Demarque, J. Límaco, L. Viana. Local null controllability of coupled degenerate systems with nonlocal terms and one control force. Evolution Equations and Control Theory, 2020, 9 (3) : 605-634. doi: 10.3934/eect.2020026

[3]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[4]

J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136

[5]

Assia Benabdallah, Michel Cristofol, Patricia Gaitan, Luz de Teresa. Controllability to trajectories for some parabolic systems of three and two equations by one control force. Mathematical Control and Related Fields, 2014, 4 (1) : 17-44. doi: 10.3934/mcrf.2014.4.17

[6]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[7]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[8]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[9]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[10]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control and Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[11]

Brahim Allal, Abdelkarim Hajjaj, Jawad Salhi, Amine Sbai. Boundary controllability for a coupled system of degenerate/singular parabolic equations. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021055

[12]

Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415

[13]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control and Related Fields, 2020, 10 (2) : 217-256. doi: 10.3934/mcrf.2019037

[14]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[15]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[16]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control and Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031

[17]

Ali Wehbe, Marwa Koumaiha, Layla Toufaily. Boundary observability and exact controllability of strongly coupled wave equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1269-1305. doi: 10.3934/dcdss.2021091

[18]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[19]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component. Mathematical Control and Related Fields, 2020, 10 (3) : 643-667. doi: 10.3934/mcrf.2020014

[20]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2022, 11 (4) : 1071-1086. doi: 10.3934/eect.2021036

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (8)

[Back to Top]