September  2013, 2(3): 461-470. doi: 10.3934/eect.2013.2.461

Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term

1. 

Laboratoire Jacques-Louis Lions, U.M.R C.N.R.S. 7598, Université Pierre et Marie Curie, Boite courrier 187, 75252 Paris Cedex 05

2. 

Université de Carthage, Institut Préparatoire aux Etudes Scientifiques et Techniques, B.P. 51, 2070 La Marsa, Tunisia

Received  May 2013 Revised  June 2013 Published  July 2013

A gradient-like property is established for second order semilinear conservative systems in presence of a linear damping term which is asymptotically weak for large times. The result is obtained under the condition that the only critical points of the potential are absolute minima. The damping term may vanish on large intervals for arbitrarily large times and tends to $0$ at infinity, but not too fast (in a non-integrable way). When the potential satisfies an adapted, uniform, Łojasiewicz gradient inequality, convergence to equilibrium of all bounded solutions is shown, with examples in both analytic and non-analytic cases.
Citation: Alain Haraux, Mohamed Ali Jendoubi. Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term. Evolution Equations and Control Theory, 2013, 2 (3) : 461-470. doi: 10.3934/eect.2013.2.461
References:
[1]

F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space, SIAM J. Control Optim., 38 (2000), 1102-1119. doi: 10.1137/S0363012998335802.

[2]

F. Alvarez and H. Attouch, Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria, ESAIM, Control Optim. Calc. Var., 6 (2001), 539-552. doi: 10.1051/cocv:2001100.

[3]

H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method, I. The continuous dynamical system: Global exploration of the local minima of a real-valued function asymptotic by analysis of a dissipative dynamical system, Commun. Contemp. Math., 2 (2000), 1-34. doi: 10.1142/S0219199700000025.

[4]

A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, J. Differential Equations, 252 (2012), 294-322. doi: 10.1016/j.jde.2011.09.012.

[5]

A. Cabot, H. Engler and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Trans. Amer. Math. Soc., 361 (2009), 5983-6017. doi: 10.1090/S0002-9947-09-04785-0.

[6]

L. Chergui, Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity, J. Dyn. Differ. Equations, 20 (2008), 643-652. doi: 10.1007/s10884-007-9099-5.

[7]

D. D'Acunto and K. Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Polon. Math., 87 (2005), 51-61. doi: 10.4064/ap87-0-5.

[8]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Masson, Paris, 1991, xii+132 pp.

[9]

A. Haraux, Positively homogeneous functions and the Łojasiewicz gradient inequality, Ann. Polon. Math., 87 (2005), 165-174. doi: 10.4064/ap87-0-13.

[10]

A. Haraux, Some applications of the Łojasiewicz gradient inequality, Comm. Pure and Applied Analysis, 11 (2012), 2417-2427. doi: 10.3934/cpaa.2012.11.2417.

[11]

A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations, 144 (1998), 313-320. doi: 10.1006/jdeq.1997.3393.

[12]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124. doi: 10.1007/s005260050133.

[13]

A. Haraux and M. A. Jendoubi, Decay estimates of the solutions to some evolution problems with an analytic nonlinearity, Asymptotic Analysis, 26 (2001), 21-36.

[14]

A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, Asymptotic Analysis, 43 (2006), 2089–-2108. . doi: 10.1137/S0363012903436569.

[15]

A. Haraux and T. S. Pham, On the Łojasiewicz exponents of quasi-homogeneous functions, Universitatis Iagellonicae Acta Mathematica, 49 (2011), 45-57.

[16]

S. Łojasiewicz, Ensembles semi-analytiques, I. H. E. S. Notes, (1965).

show all references

References:
[1]

F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space, SIAM J. Control Optim., 38 (2000), 1102-1119. doi: 10.1137/S0363012998335802.

[2]

F. Alvarez and H. Attouch, Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria, ESAIM, Control Optim. Calc. Var., 6 (2001), 539-552. doi: 10.1051/cocv:2001100.

[3]

H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method, I. The continuous dynamical system: Global exploration of the local minima of a real-valued function asymptotic by analysis of a dissipative dynamical system, Commun. Contemp. Math., 2 (2000), 1-34. doi: 10.1142/S0219199700000025.

[4]

A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping, J. Differential Equations, 252 (2012), 294-322. doi: 10.1016/j.jde.2011.09.012.

[5]

A. Cabot, H. Engler and S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Trans. Amer. Math. Soc., 361 (2009), 5983-6017. doi: 10.1090/S0002-9947-09-04785-0.

[6]

L. Chergui, Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity, J. Dyn. Differ. Equations, 20 (2008), 643-652. doi: 10.1007/s10884-007-9099-5.

[7]

D. D'Acunto and K. Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Polon. Math., 87 (2005), 51-61. doi: 10.4064/ap87-0-5.

[8]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Masson, Paris, 1991, xii+132 pp.

[9]

A. Haraux, Positively homogeneous functions and the Łojasiewicz gradient inequality, Ann. Polon. Math., 87 (2005), 165-174. doi: 10.4064/ap87-0-13.

[10]

A. Haraux, Some applications of the Łojasiewicz gradient inequality, Comm. Pure and Applied Analysis, 11 (2012), 2417-2427. doi: 10.3934/cpaa.2012.11.2417.

[11]

A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations, 144 (1998), 313-320. doi: 10.1006/jdeq.1997.3393.

[12]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124. doi: 10.1007/s005260050133.

[13]

A. Haraux and M. A. Jendoubi, Decay estimates of the solutions to some evolution problems with an analytic nonlinearity, Asymptotic Analysis, 26 (2001), 21-36.

[14]

A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, Asymptotic Analysis, 43 (2006), 2089–-2108. . doi: 10.1137/S0363012903436569.

[15]

A. Haraux and T. S. Pham, On the Łojasiewicz exponents of quasi-homogeneous functions, Universitatis Iagellonicae Acta Mathematica, 49 (2011), 45-57.

[16]

S. Łojasiewicz, Ensembles semi-analytiques, I. H. E. S. Notes, (1965).

[1]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure and Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[2]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[3]

María Anguiano, Tomás Caraballo. Asymptotic behaviour of a non-autonomous Lorenz-84 system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3901-3920. doi: 10.3934/dcds.2014.34.3901

[4]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[5]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[6]

Abdessatar Khelifi, Siwar Saidani. Asymptotic behavior of eigenvalues of the Maxwell system in the presence of small changes in the interface of an inclusion. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022080

[7]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[8]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[9]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[10]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[11]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047

[12]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[13]

Rana D. Parshad. Asymptotic behaviour of the Darcy-Boussinesq system at large Darcy-Prandtl number. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1441-1469. doi: 10.3934/dcds.2010.26.1441

[14]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[15]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[16]

Jaime E. Muñoz Rivera, Maria Grazia Naso. About the stability to Timoshenko system with pointwise dissipation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2289-2303. doi: 10.3934/dcdss.2022078

[17]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[18]

Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723

[19]

Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354

[20]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system. Communications on Pure and Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]