September  2013, 2(3): 495-516. doi: 10.3934/eect.2013.2.495

Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations

1. 

Lavryentyev Institute of Hydrodynamics, Siberian Division of Russian Academy of Sciences, Lavryentyev pr. 15, Novosibirsk 630090, Russian Federation

2. 

Institut Élie Cartan Nancy, UMR7502 Université Lorraine, CNRS, INRIA, Laboratoire de Mathématiques, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  March 2013 Revised  May 2013 Published  July 2013

The flow around a rigid obstacle is governed by the compressible Navier-Stokes equations. The nonhomogeneous Dirichlet problem is considered in a bounded domain in two spatial dimensions with a compact obstacle in its interior. The flight of the airflow is characterized by the work shape functional, to be minimized over a family of admissible obstacles. The lift of the airfoil is a given function of temporal variable and should be maintain closed to the flight scenario. The continuity of the work functional with respect to the shape of obstacle in two spatial dimensions is shown for a wide class of admissible obstacles compact with respect to the Kuratowski-Mosco convergence.
    The dependence of small perturbations of approximate solutions to the governing equations with respect to the boundary variations of obstacles is analyzed for the nonstationary state equation.
Citation: Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495
References:
[1]

E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits,, J. Math. Fluid Mech., 14 (2012), 731.  doi: 10.1007/s00021-012-0106-1.  Google Scholar

[2]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains,, Dissertationes Math., 462 (2009), 1.  doi: 10.4064/dm462-0-1.  Google Scholar

[3]

A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows,, in, (): 97.   Google Scholar

[4]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models,", Clarendon Press, (1998).   Google Scholar

[5]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions,", Chapman & Hall/CRC, (2006).  doi: 10.1201/9781420003246.  Google Scholar

[6]

P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization,", Birkhäuser, (2012).   Google Scholar

[7]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis,, SIAM J. Math. Anal., 40 (2008), 1152.  doi: 10.1137/070694272.  Google Scholar

[8]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations,, J. Math. Pures Appl., 92 (2009), 113.  doi: 10.1016/j.matpur.2009.02.001.  Google Scholar

[9]

P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations,, J. Math. Fluid Mech., 7 (2005), 529.  doi: 10.1007/s00021-004-0134-6.  Google Scholar

[10]

P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations,, Comm. Math. Phys., 258 (2005), 567.  doi: 10.1007/s00220-005-1358-x.  Google Scholar

[11]

P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations,, SIAM J. Control Optim., 45 (2006), 1165.  doi: 10.1137/050635304.  Google Scholar

[12]

P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations,, in, VI (2008), 313.  doi: 10.1016/S1874-5733(08)80022-8.  Google Scholar

[13]

P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional,, SIAM J. Control Optim., 48 (2010), 4680.  doi: 10.1137/090758179.  Google Scholar

[14]

P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains,, in, (2009), 37.   Google Scholar

[15]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Ser. Comput. Math., 16 (1992).   Google Scholar

[16]

V. Šverák, On optimal shape design,, J. Math. Pures Appl., 72 (1993), 537.   Google Scholar

show all references

References:
[1]

E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits,, J. Math. Fluid Mech., 14 (2012), 731.  doi: 10.1007/s00021-012-0106-1.  Google Scholar

[2]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains,, Dissertationes Math., 462 (2009), 1.  doi: 10.4064/dm462-0-1.  Google Scholar

[3]

A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows,, in, (): 97.   Google Scholar

[4]

P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models,", Clarendon Press, (1998).   Google Scholar

[5]

M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions,", Chapman & Hall/CRC, (2006).  doi: 10.1201/9781420003246.  Google Scholar

[6]

P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization,", Birkhäuser, (2012).   Google Scholar

[7]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis,, SIAM J. Math. Anal., 40 (2008), 1152.  doi: 10.1137/070694272.  Google Scholar

[8]

P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations,, J. Math. Pures Appl., 92 (2009), 113.  doi: 10.1016/j.matpur.2009.02.001.  Google Scholar

[9]

P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations,, J. Math. Fluid Mech., 7 (2005), 529.  doi: 10.1007/s00021-004-0134-6.  Google Scholar

[10]

P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations,, Comm. Math. Phys., 258 (2005), 567.  doi: 10.1007/s00220-005-1358-x.  Google Scholar

[11]

P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations,, SIAM J. Control Optim., 45 (2006), 1165.  doi: 10.1137/050635304.  Google Scholar

[12]

P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations,, in, VI (2008), 313.  doi: 10.1016/S1874-5733(08)80022-8.  Google Scholar

[13]

P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional,, SIAM J. Control Optim., 48 (2010), 4680.  doi: 10.1137/090758179.  Google Scholar

[14]

P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains,, in, (2009), 37.   Google Scholar

[15]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Ser. Comput. Math., 16 (1992).   Google Scholar

[16]

V. Šverák, On optimal shape design,, J. Math. Pures Appl., 72 (1993), 537.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[18]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[19]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]