Citation: |
[1] |
E. Feireisl and E. Friedmann, Continuity of drag and domain stability in the low Mach number limits, J. Math. Fluid Mech., 14 (2012), 731-750.doi: 10.1007/s00021-012-0106-1. |
[2] |
G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains, Dissertationes Math., 462 (2009), 1-149.doi: 10.4064/dm462-0-1. |
[3] |
A. Kaźmierczak, P. I. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical method for drag minimization in compressible flows, in "15th International Conference on Methods and Models in Automation and Robotics," MMAR'10. 97-101. Avalaible from: http://ieeexplore.ieee.org/stamp/stamp.jsp\$\protect\unhbox\voidb@x\hbox{?}\$tp=\$ \$arnumber=5587258 |
[4] |
P.-L. Lions, "Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models," Clarendon Press, Oxford, 1998. |
[5] |
M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control: Applications to Fluid Structure Interactions," Chapman & Hall/CRC, Boca Raton, FL, 2006.doi: 10.1201/9781420003246. |
[6] |
P. I. Plotnikov and J. Sokolowski, "Compressible Navier-Stokes Equations. Theory and Shape Optimization," Birkhäuser, Basel, 2012. |
[7] |
P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes equations, well-posedness and sensitivity analysis, SIAM J. Math. Anal., 40 (2008), 1152-1200.doi: 10.1137/070694272. |
[8] |
P. I. Plotnikov, E. V. Ruban and J. Sokołowski, Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations, J. Math. Pures Appl., 92 (2009), 113-162.doi: 10.1016/j.matpur.2009.02.001. |
[9] |
P. I. Plotnikov and J. Sokołowski, On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations, J. Math. Fluid Mech., 7 (2005), 529-573.doi: 10.1007/s00021-004-0134-6. |
[10] |
P. I. Plotnikov and J. Sokołowski, Concentrations of solutions to time-discretized compressible Navier -Stokes equations, Comm. Math. Phys., 258 (2005), 567-608.doi: 10.1007/s00220-005-1358-x. |
[11] |
P. I. Plotnikov and J. Sokołowski, Domain dependence of solutions to compressible Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 1165-1197.doi: 10.1137/050635304. |
[12] |
P. I. Plotnikov and J. Sokołowski, Stationary boundary value problems for compressible Navier-Stokes equations, in "Handbook of Differential Equations: Stationary Partial Differential Equations," VI, Elsevier/North-Holland, Amsterdam, (2008), 313-410.doi: 10.1016/S1874-5733(08)80022-8. |
[13] |
P. I. Plotnikov and J. Sokołowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706.doi: 10.1137/090758179. |
[14] |
P. Plotnikov, J. Sokołowski and A. .Zochowski, Numerical experiments in drag minimization for compressible Navier-Stokes flows in bounded domains, in "Proc. 14th International IEEE/IFAC Conference on Methods and Models in Automation and Robotics MMAR'09" (2009), 37-40. Avalaible from: http://www.ifac-papersonline.net/Detailed/41051.html. |
[15] |
J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Ser. Comput. Math., 16, Springer, Berlin, 1992. |
[16] |
V. Šverák, On optimal shape design, J. Math. Pures Appl., 72 (1993), 537-551. |