September  2013, 2(3): 517-530. doi: 10.3934/eect.2013.2.517

On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions

1. 

Dipartimento di Scienze di Base e Applicate, per l'Ingegneria-Sezione di Matematica, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy

Received  December 2012 Revised  April 2013 Published  July 2013

In this paper we consider a geometric motion associated with the minimization of a functional which is the sum of a kinetic part of $p$-Laplacian type, a double well potential $\psi$ and a curvature term. In the case $p=2$, such a functional arises in connection with the image segmentation problem in computer vision theory. By means of matched asymptotic expansions, we show that the geometric motion can be approximated by the evolution of the zero level set of the solution of a nonlinear $p$-order equation. The singular limit depends on a complex way on the mean and Gaussian curvatures and the surface Laplacian of the mean curvature of the evolving front.
Citation: Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517
References:
[1]

J. W. Cahn, C. M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature,, European J. Appl. Math., 7 (1996), 287.  doi: 10.1017/S0956792500002369.  Google Scholar

[2]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[3]

Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 207.  doi: 10.3792/pjaa.65.207.  Google Scholar

[4]

E. De Giorgi, Convergence problems for functionals and operators,, Prooceedings of the International Meeting on Recent Methods in Nonlinear Analysis, (1979), 131.   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1977).   Google Scholar

[6]

P. Loreti and R. March, Propagation of fronts in a nonlinear fourth order equation,, European J. Appl. Math., 11 (2000), 203.  doi: 10.1017/S0956792599004131.  Google Scholar

[7]

B. Lou, Singular limit of a $p$-Laplacian reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 110 (2003), 377.  doi: 10.1023/A:1021083015108.  Google Scholar

[8]

R. March and M. Dozio, A variational method for the recovery of smooth boundaries,, Image and Vision Computing, 15 (1997), 705.  doi: 10.1016/S0262-8856(97)00002-4.  Google Scholar

[9]

L. Modica and S. Mortola, Un esempio di $\Gamma ^-$-convergenza,, Boll. Un. Mat. Ital. B (5), 14 (1977), 285.   Google Scholar

[10]

R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation,, Proc. Roy. Soc. London Ser. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[11]

C. Pocci, Singular limit of a nonlinear fourth order equation with spatially inhomogeneous terms,, submitted., ().   Google Scholar

[12]

B. Sciunzi and E. Valdinoci, Mean curvature properties for $p$-Laplace phase transitions,, J. Eur. Math. Soc. (JEMS), 7 (2005), 319.  doi: 10.4171/JEMS/31.  Google Scholar

show all references

References:
[1]

J. W. Cahn, C. M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature,, European J. Appl. Math., 7 (1996), 287.  doi: 10.1017/S0956792500002369.  Google Scholar

[2]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[3]

Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 207.  doi: 10.3792/pjaa.65.207.  Google Scholar

[4]

E. De Giorgi, Convergence problems for functionals and operators,, Prooceedings of the International Meeting on Recent Methods in Nonlinear Analysis, (1979), 131.   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1977).   Google Scholar

[6]

P. Loreti and R. March, Propagation of fronts in a nonlinear fourth order equation,, European J. Appl. Math., 11 (2000), 203.  doi: 10.1017/S0956792599004131.  Google Scholar

[7]

B. Lou, Singular limit of a $p$-Laplacian reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 110 (2003), 377.  doi: 10.1023/A:1021083015108.  Google Scholar

[8]

R. March and M. Dozio, A variational method for the recovery of smooth boundaries,, Image and Vision Computing, 15 (1997), 705.  doi: 10.1016/S0262-8856(97)00002-4.  Google Scholar

[9]

L. Modica and S. Mortola, Un esempio di $\Gamma ^-$-convergenza,, Boll. Un. Mat. Ital. B (5), 14 (1977), 285.   Google Scholar

[10]

R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation,, Proc. Roy. Soc. London Ser. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[11]

C. Pocci, Singular limit of a nonlinear fourth order equation with spatially inhomogeneous terms,, submitted., ().   Google Scholar

[12]

B. Sciunzi and E. Valdinoci, Mean curvature properties for $p$-Laplace phase transitions,, J. Eur. Math. Soc. (JEMS), 7 (2005), 319.  doi: 10.4171/JEMS/31.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[4]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[11]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[12]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[13]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[14]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[20]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]