\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Energy methods for Hartree type equations with inverse-square potentials

Abstract Related Papers Cited by
  • Nonlinear Schrödinger equations with nonlocal nonlinearities described by integral operators are considered. This generalizes usual Hartree type equations (HE)$_{0}$. We construct weak solutions to (HE)$_{a}$, $a\neq 0$, even if the kernel is of non-convolution type. The advantage of our methods is the applicability to the problem with strongly singular potential $a|x|^{-2}$ as a term in the linear part and with critical nonlinearity.
    Mathematics Subject Classification: Primary: 35Q55, 35Q40; Secondary: 81Q15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Bahouri, J.-Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations," Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-16830-7.

    [2]

    N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.doi: 10.1016/S0022-1236(03)00238-6.

    [3]

    N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.doi: 10.1512/iumj.2004.53.2541.

    [4]

    T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, 2003.

    [5]

    T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.doi: 10.1007/BF01258601.

    [6]

    J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys., 16 (1975), 1122-1130.doi: 10.1063/1.522642.

    [7]

    J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z., 170 (1980), 109-136.doi: 10.1007/BF01214768.

    [8]

    E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.doi: 10.1007/BF01609845.

    [9]

    N. Okazawa, T. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.doi: 10.1080/00036811.2011.631914.

    [10]

    N. Okazawa, T. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evolution Equations and Control Theory, 1 (2012), 337-354.doi: 10.3934/eect.2012.1.337.

    [11]

    V. Pierfelice, Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces, Math. Z., 260 (2008), 377-392.doi: 10.1007/s00209-007-0279-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return