\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the structural properties of an efficient feedback law

Abstract Related Papers Cited by
  • We investigate some structural properties of an efficient feedback law that stabilize linear time-reversible systems with an arbitrarily large decay rate. After giving a short proof of the generation of a group by the closed-loop operator, we focus on the domain of the infinitesimal generator in order to illustrate the difference between a distributed control and a boundary control, the latter being technically more complex. We also give a new proof of the exponential decay of the solutions and we provide an explanation of the higher decay rate observed in some experiments.
    Mathematics Subject Classification: Primary: 93D15; Secondary: 93C05, 47D06, 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems, SIAM J. Control Optim., 37 (1999), 521-542.doi: 10.1137/S0363012996313835.

    [2]

    A. Benabdallah and M. Lenczner, Estimation du taux de décroissance pour la solution de problèmes de stabilisation, application à la stabilisation de l'équation des ondes, RAIRO Modél. Math. Anal. Numér., 30 (1996), 607-635.

    [3]

    A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems," Second edition, Birkhäuser, Boston, 2007.

    [4]

    F. Bourquin, M. Joly, M. Collet and L. Ratier, An efficient feedback control algorithm for beams: Experimental investigations, Journal of Sound and Vibration, 278 (2004), 181-206.doi: 10.1016/j.jsv.2003.10.053.

    [5]

    H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations," Springer, New York, 2011.

    [6]

    J.-S. Briffaut., "Méthodes Numériques Pour le Contrôle et la Stabilisation Rapide des Grandes Strucutures Flexibles," PhD thesis, École Nationale des Ponts et Chaussées, 1999.

    [7]

    T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations," Oxford University Press, New York, 1998.

    [8]

    G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. 58 (1979), 249-273.

    [9]

    K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Springer-Verlag, 2000.

    [10]

    F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems, Ann. Mat. Pura Appl., 153 (1988), 307-382.doi: 10.1007/BF01762397.

    [11]

    D. L. Kleinman, An easy way to stabilize a linear constant system, IEEE Transactions on Automatic Control, 15 (1970), 692.doi: 10.1109/TAC.1970.1099612.

    [12]

    V. Komornik, Rapid boundary stabilization of linear distributed systems, SIAM J. Control Optim., 35 (1997), 1591-1613.doi: 10.1137/S0363012996301609.

    [13]

    V. Komornik, Rapid boundary stabilization of Maxwell's equations, in "Équations aux Dérivées Partielles et Applications," Gauthier-Villars, Paris, (1998), 611-622.

    [14]

    V. Komornik and P. Loreti, "Fourier Series in Control Theory," Springer-Verlag, New York, 2005.

    [15]

    J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182.doi: 10.1016/0022-0396(83)90073-6.

    [16]

    I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_{2}(0,T;L_{2}(\Gamma ))$-Dirichlet boundary terms, Appl. Math. Optim., 10 (1983), 275-286.doi: 10.1007/BF01448390.

    [17]

    I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2(0,\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.doi: 10.1016/0022-0396(87)90025-8.

    [18]

    I. Lasiecka and R.Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories, volume II, Abstract Hyperbolic-like Systems over a Finite Time Horizon," Cambridge University Press, Cambridge, 2000.

    [19]

    J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.doi: 10.1137/1030001.

    [20]

    D. L. Lukes, Stabilizability and optimal control, Funkcial. Ekvac., 11 (1968), 39-50.

    [21]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, 1983, viii+279 pp.doi: 10.1007/978-1-4612-5561-1.

    [22]

    J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97-127.

    [23]

    D. L. Russell, "Mathematics of Finite-Dimensional Control Systems," Marcel Dekker Inc., New York, 1979.

    [24]

    M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508.doi: 10.1137/0312038.

    [25]

    A. Smyshlyaev, B.-Z. Guo and M. Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback, IEEE Trans. Automat. Control, 54 (2009), 1134-1140.doi: 10.1109/TAC.2009.2013038.

    [26]

    J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators, SIAM J. Control Optim., 43 (2005), 2233-2244.doi: 10.1137/S0363012901388452.

    [27]

    A. VestRapid stabilization in a semigroup framework, Preprint, arXiv:1301.5744.

    [28]

    H. ZwartInvertible solutions of the Lyapunov and algebraic Riccati equation, preprint, http://wwwhome.math.utwente.nl/ zwarthj/.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(46) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return