Citation: |
[1] |
G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. Part I: Explicit semigroup generator and its spectral properties, in "Fluids and Waves," Contemp. Math., 440, AMS, Providence, RI, (2007), 15-54.doi: 10.1090/conm/440/08475. |
[2] |
V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in "Fluids and Waves," Contem. Math., 440, AMS, Providence, RI, (2007), 55-82.doi: 10.1090/conm/440/08476. |
[3] |
V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1173-1207.doi: 10.1512/iumj.2008.57.3284. |
[4] |
L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping, Nonlinear Analysis A: Theory, Methods and Applications, 71 (2009), e560-e575.doi: 10.1016/j.na.2008.11.062. |
[5] |
L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Applicationes Mathematicae, 35 (2008), 281-304.doi: 10.4064/am35-3-3. |
[6] |
L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860.doi: 10.3934/dcds.2008.22.835. |
[7] |
L. Bociu and I. Lasiecka, Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, JDE, 249 (2010), 654-683.doi: 10.1016/j.jde.2010.03.009. |
[8] |
L. Bociu and P. Radu, Existence and uniqueness of weak solutions to the cauchy problem of a semilinear wave equation with supercritical interior source and damping, Discrete Contin. Dyn. Syst., 2009, Dynamical Systems, Differential Equations and Applications, 7th AIMS Confernece, suppl., 60-71. |
[9] |
L. Bociu and J.-P. Zolésio, Linearization of a coupled system of nonlinear elasticity and viscous fluid, in "Modern Aspects of the Theory of Partial Differential Equations," Operator Theory: Advances and Applications, 216, Birkhäuser/Springer Basel AG, Basel, (2011), 93-120.doi: 10.1007/978-3-0348-0069-3_6. |
[10] |
L. Bociu and J.-P. Zolésio, Existence for the linearization of a steady state fluid - nonlinear elasticity interaction, Discrete and Continuous Dynamical Systems, Supplement, (2011), 184-197. |
[11] |
S. Boisgérault and J. P. Zolésio, Boundary variations in the Navier-Stokes equations and Lagrangian functionals, in "Shape Optimization and Optimal Design" (Cambridge, 1999), Lecture Notes in Pure and Appl. Math., 216, Dekker, New York, (2001), 7-26. |
[12] |
M. Boulakia, Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible fluid, J. Math. Fluid Mech., 9 (2007), 262-294.doi: 10.1007/s00021-005-0201-7. |
[13] |
S. Čanić, A. Mikelić, T.-B. Kim and G. Guidoboni, Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow, in "Nonlinear Conservation Laws and Applications," IMA Vol. Math. Appl., 153, Springer, New York, (2011), 235-256.doi: 10.1007/978-1-4419-9554-4_11. |
[14] |
P. G. Ciarlet, "Mathematical Elasticity. Volume I: Three-dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. |
[15] |
C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000), 1019-1042.doi: 10.1080/03605300008821540. |
[16] |
D. Coutand and S. Shkoller, Motion of an elastic solid inside and incompressible viscous fluid, Arch. Rational Mech. Anal., 176 (2005), 25-102.doi: 10.1007/s00205-004-0340-7. |
[17] |
D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Rational Mech. Anal. 179 (2006), 303-352.doi: 10.1007/s00205-005-0385-2. |
[18] |
M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization," Advances in Design and Control, 4, SIAM, Philadelphia, PA, 2001. |
[19] |
M. C. Delfour and J.-P. Zolésio, Hidden boundary smoothness for some classes of differential equations on submanifolds, in " Optimization Methods in Partial Differential Equations" (South Hadley, MA, 1996), Contemporary Mathematics, 209, AMS, Providence, RI, (1997), 59-73.doi: 10.1090/conm/209/02759. |
[20] |
F. R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation, J. Funct. Anal., 151 (1997), 234-269.doi: 10.1006/jfan.1997.3130. |
[21] |
B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Math. Complut., 14 (2001), 523-538. |
[22] |
B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71.doi: 10.1007/s002050050136. |
[23] |
Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, DCDS, 9 (2003), 633-650.doi: 10.3934/dcds.2003.9.633. |
[24] |
R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical Navier-Stokes equations, J. Convex Anal., 6 (1999), 293-318. |
[25] |
E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equations, 3 (2003), 419-441.doi: 10.1007/s00028-003-0110-1. |
[26] |
L. Formaggia, A. Quarteroni and A. Veneziani, eds., "Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System," MS$&$A, Modeling, Simulation and Applications, 1, Springer-Verlag Italia, Milano, 2009.doi: 10.1007/978-88-470-1152-6. |
[27] |
C. Grandmont and Y. Maday, Existence for unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636.doi: 10.1051/m2an:2000159. |
[28] |
M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000), 219-266.doi: 10.1007/PL00000954. |
[29] |
E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam, DCDS-S, 2009, Dynamical Systems, Differential Equations and Applications, 7th AIMS Conference, suppl., 424-432. |
[30] |
T. Kim, S. Čanić and G. Guidoboni, Existence and uniqueness of a solution to a three-dimensional axially symmetric biot problem arising in modeling blood flow, Communications on Pure and Applied Analysis, 9 (2010), 839-865.doi: 10.3934/cpaa.2010.9.839. |
[31] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system, J. Diff. Eq., 247 (2009), 1452-1478.doi: 10.1016/j.jde.2009.06.005. |
[32] |
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity, 24 (2011), 159-176.doi: 10.1088/0951-7715/24/1/008. |
[33] |
I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories," Volumes I and II, Cambridge, University Press, 2000. |
[34] |
I.Lasiecka and A. Tuffaha, Optimal feedback synthesis for bolza control problem arising in linearized fluid structure interaction, in " Optimal Control of Coupled Systems of Partial Differential Equations," International Series of Numerical Mathematics, 158, Birkhäuser Verlag, Basel, (2009), 171-190.doi: 10.1007/978-3-7643-8923-9_10. |
[35] |
J.-L. Lions, "Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires," Dunod, 1969. |
[36] |
P. I. Plotnikov and J. Sokolowski, Shape derivative of drag functional, SIAM J. Control Optim., 48 (2010), 4680-4706.doi: 10.1137/090758179. |
[37] |
J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), 113-147.doi: 10.1007/s002050100172. |
[38] |
J. Sokolowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58106-9. |
[39] |
B. N. Steele, D. Valdez-Jasso, M. A. Haider and M. S. Olufsen, Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall, SIAM J. Appl. Math., 71 (2011), 1123-1143.doi: 10.1137/100810186. |
[40] |
D. Tataru, On the regularity of boundary traces for the wave equation, Annali di Scuola Normale Sup. Pisa Cl. Sci. (4), 26 (1998), 185-206. |
[41] |
J.-P. Zolésio, Weak shape formulation of free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 11-44. |