March  2013, 2(1): 55-79. doi: 10.3934/eect.2013.2.55

Sensitivity analysis for a free boundary fluid-elasticity interaction

1. 

NC State University, Department of Mathematics, 3236 SAS Hall, Raleigh, NC 27695-8205

2. 

CNRS-INLN, 1361 Routes des Lucioles, Sophia Antipolis, F-06560 Valbonne

Received  June 2012 Revised  September 2012 Published  January 2013

In this paper a total linearization is derived for the free boundary nonlinear elasticity - incompressible fluid interaction. The equations and the free boundary are linearized together and the new linearization turns out to be different from the usual coupling of classical linear models. New extra terms are present on the common interface, some of them involving the boundary curvatures. These terms play an important role in the final linearized system and can not be neglected.
Citation: Lorena Bociu, Jean-Paul Zolésio. Sensitivity analysis for a free boundary fluid-elasticity interaction. Evolution Equations & Control Theory, 2013, 2 (1) : 55-79. doi: 10.3934/eect.2013.2.55
References:
[1]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. Part I: Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15.  doi: 10.1090/conm/440/08475.  Google Scholar

[2]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in, 440 (2007), 55.  doi: 10.1090/conm/440/08476.  Google Scholar

[3]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model,, Indiana Univ. Math. J., 57 (2008), 1173.  doi: 10.1512/iumj.2008.57.3284.  Google Scholar

[4]

L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping,, Nonlinear Analysis A: Theory, 71 (2009).  doi: 10.1016/j.na.2008.11.062.  Google Scholar

[5]

L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping,, Applicationes Mathematicae, 35 (2008), 281.  doi: 10.4064/am35-3-3.  Google Scholar

[6]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping,, Discrete Contin. Dyn. Syst., 22 (2008), 835.  doi: 10.3934/dcds.2008.22.835.  Google Scholar

[7]

L. Bociu and I. Lasiecka, Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, JDE, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[8]

L. Bociu and P. Radu, Existence and uniqueness of weak solutions to the cauchy problem of a semilinear wave equation with supercritical interior source and damping,, Discrete Contin. Dyn. Syst., 2009 (): 60.   Google Scholar

[9]

L. Bociu and J.-P. Zolésio, Linearization of a coupled system of nonlinear elasticity and viscous fluid,, in, 216 (2011), 93.  doi: 10.1007/978-3-0348-0069-3_6.  Google Scholar

[10]

L. Bociu and J.-P. Zolésio, Existence for the linearization of a steady state fluid - nonlinear elasticity interaction,, Discrete and Continuous Dynamical Systems, (2011), 184.   Google Scholar

[11]

S. Boisgérault and J. P. Zolésio, Boundary variations in the Navier-Stokes equations and Lagrangian functionals,, in, 216 (2001), 7.   Google Scholar

[12]

M. Boulakia, Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible fluid,, J. Math. Fluid Mech., 9 (2007), 262.  doi: 10.1007/s00021-005-0201-7.  Google Scholar

[13]

S. Čanić, A. Mikelić, T.-B. Kim and G. Guidoboni, Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow,, in, 153 (2011), 235.  doi: 10.1007/978-1-4419-9554-4_11.  Google Scholar

[14]

P. G. Ciarlet, "Mathematical Elasticity. Volume I: Three-dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).   Google Scholar

[15]

C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid,, Comm. Partial Differential Equations, 25 (2000), 1019.  doi: 10.1080/03605300008821540.  Google Scholar

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside and incompressible viscous fluid,, Arch. Rational Mech. Anal., 176 (2005), 25.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[17]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations,, Arch. Rational Mech. Anal. 179 (2006), 179 (2006), 303.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[18]

M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization,", Advances in Design and Control, 4 (2001).   Google Scholar

[19]

M. C. Delfour and J.-P. Zolésio, Hidden boundary smoothness for some classes of differential equations on submanifolds,, in, 209 (1997), 59.  doi: 10.1090/conm/209/02759.  Google Scholar

[20]

F. R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation,, J. Funct. Anal., 151 (1997), 234.  doi: 10.1006/jfan.1997.3130.  Google Scholar

[21]

B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model,, Rev. Math. Complut., 14 (2001), 523.   Google Scholar

[22]

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid,, Arch. Ration. Mech. Anal., 146 (1999), 59.  doi: 10.1007/s002050050136.  Google Scholar

[23]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, DCDS, 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar

[24]

R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical Navier-Stokes equations,, J. Convex Anal., 6 (1999), 293.   Google Scholar

[25]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid,, J. Evol. Equations, 3 (2003), 419.  doi: 10.1007/s00028-003-0110-1.  Google Scholar

[26]

L. Formaggia, A. Quarteroni and A. Veneziani, eds., "Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System,", MS$&$A, 1 (2009).  doi: 10.1007/978-88-470-1152-6.  Google Scholar

[27]

C. Grandmont and Y. Maday, Existence for unsteady fluid-structure interaction problem,, M2AN Math. Model. Numer. Anal., 34 (2000), 609.  doi: 10.1051/m2an:2000159.  Google Scholar

[28]

M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions,, J. Math. Fluid Mech., 2 (2000), 219.  doi: 10.1007/PL00000954.  Google Scholar

[29]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, DCDS-S, 2009 (): 424.   Google Scholar

[30]

T. Kim, S. Čanić and G. Guidoboni, Existence and uniqueness of a solution to a three-dimensional axially symmetric biot problem arising in modeling blood flow,, Communications on Pure and Applied Analysis, 9 (2010), 839.  doi: 10.3934/cpaa.2010.9.839.  Google Scholar

[31]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system,, J. Diff. Eq., 247 (2009), 1452.  doi: 10.1016/j.jde.2009.06.005.  Google Scholar

[32]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary,, Nonlinearity, 24 (2011), 159.  doi: 10.1088/0951-7715/24/1/008.  Google Scholar

[33]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories," Volumes I and II,, Cambridge, (2000).   Google Scholar

[34]

I.Lasiecka and A. Tuffaha, Optimal feedback synthesis for bolza control problem arising in linearized fluid structure interaction,, in, 158 (2009), 171.  doi: 10.1007/978-3-7643-8923-9_10.  Google Scholar

[35]

J.-L. Lions, "Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[36]

P. I. Plotnikov and J. Sokolowski, Shape derivative of drag functional,, SIAM J. Control Optim., 48 (2010), 4680.  doi: 10.1137/090758179.  Google Scholar

[37]

J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 161 (2002), 113.  doi: 10.1007/s002050100172.  Google Scholar

[38]

J. Sokolowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[39]

B. N. Steele, D. Valdez-Jasso, M. A. Haider and M. S. Olufsen, Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall,, SIAM J. Appl. Math., 71 (2011), 1123.  doi: 10.1137/100810186.  Google Scholar

[40]

D. Tataru, On the regularity of boundary traces for the wave equation,, Annali di Scuola Normale Sup. Pisa Cl. Sci. (4), 26 (1998), 185.   Google Scholar

[41]

J.-P. Zolésio, Weak shape formulation of free boundary problems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 11.   Google Scholar

show all references

References:
[1]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. Part I: Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15.  doi: 10.1090/conm/440/08475.  Google Scholar

[2]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model,, in, 440 (2007), 55.  doi: 10.1090/conm/440/08476.  Google Scholar

[3]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model,, Indiana Univ. Math. J., 57 (2008), 1173.  doi: 10.1512/iumj.2008.57.3284.  Google Scholar

[4]

L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping,, Nonlinear Analysis A: Theory, 71 (2009).  doi: 10.1016/j.na.2008.11.062.  Google Scholar

[5]

L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping,, Applicationes Mathematicae, 35 (2008), 281.  doi: 10.4064/am35-3-3.  Google Scholar

[6]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping,, Discrete Contin. Dyn. Syst., 22 (2008), 835.  doi: 10.3934/dcds.2008.22.835.  Google Scholar

[7]

L. Bociu and I. Lasiecka, Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, JDE, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[8]

L. Bociu and P. Radu, Existence and uniqueness of weak solutions to the cauchy problem of a semilinear wave equation with supercritical interior source and damping,, Discrete Contin. Dyn. Syst., 2009 (): 60.   Google Scholar

[9]

L. Bociu and J.-P. Zolésio, Linearization of a coupled system of nonlinear elasticity and viscous fluid,, in, 216 (2011), 93.  doi: 10.1007/978-3-0348-0069-3_6.  Google Scholar

[10]

L. Bociu and J.-P. Zolésio, Existence for the linearization of a steady state fluid - nonlinear elasticity interaction,, Discrete and Continuous Dynamical Systems, (2011), 184.   Google Scholar

[11]

S. Boisgérault and J. P. Zolésio, Boundary variations in the Navier-Stokes equations and Lagrangian functionals,, in, 216 (2001), 7.   Google Scholar

[12]

M. Boulakia, Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible fluid,, J. Math. Fluid Mech., 9 (2007), 262.  doi: 10.1007/s00021-005-0201-7.  Google Scholar

[13]

S. Čanić, A. Mikelić, T.-B. Kim and G. Guidoboni, Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow,, in, 153 (2011), 235.  doi: 10.1007/978-1-4419-9554-4_11.  Google Scholar

[14]

P. G. Ciarlet, "Mathematical Elasticity. Volume I: Three-dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).   Google Scholar

[15]

C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid,, Comm. Partial Differential Equations, 25 (2000), 1019.  doi: 10.1080/03605300008821540.  Google Scholar

[16]

D. Coutand and S. Shkoller, Motion of an elastic solid inside and incompressible viscous fluid,, Arch. Rational Mech. Anal., 176 (2005), 25.  doi: 10.1007/s00205-004-0340-7.  Google Scholar

[17]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations,, Arch. Rational Mech. Anal. 179 (2006), 179 (2006), 303.  doi: 10.1007/s00205-005-0385-2.  Google Scholar

[18]

M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization,", Advances in Design and Control, 4 (2001).   Google Scholar

[19]

M. C. Delfour and J.-P. Zolésio, Hidden boundary smoothness for some classes of differential equations on submanifolds,, in, 209 (1997), 59.  doi: 10.1090/conm/209/02759.  Google Scholar

[20]

F. R. Desaint and J.-P. Zolésio, Manifold derivative in the Laplace-Beltrami equation,, J. Funct. Anal., 151 (1997), 234.  doi: 10.1006/jfan.1997.3130.  Google Scholar

[21]

B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model,, Rev. Math. Complut., 14 (2001), 523.   Google Scholar

[22]

B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid,, Arch. Ration. Mech. Anal., 146 (1999), 59.  doi: 10.1007/s002050050136.  Google Scholar

[23]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, DCDS, 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar

[24]

R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical Navier-Stokes equations,, J. Convex Anal., 6 (1999), 293.   Google Scholar

[25]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid,, J. Evol. Equations, 3 (2003), 419.  doi: 10.1007/s00028-003-0110-1.  Google Scholar

[26]

L. Formaggia, A. Quarteroni and A. Veneziani, eds., "Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System,", MS$&$A, 1 (2009).  doi: 10.1007/978-88-470-1152-6.  Google Scholar

[27]

C. Grandmont and Y. Maday, Existence for unsteady fluid-structure interaction problem,, M2AN Math. Model. Numer. Anal., 34 (2000), 609.  doi: 10.1051/m2an:2000159.  Google Scholar

[28]

M. D. Gunzburger, H.-C. Lee and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions,, J. Math. Fluid Mech., 2 (2000), 219.  doi: 10.1007/PL00000954.  Google Scholar

[29]

E. Kaya, E. Aulisa, A. Ibragimov and P. Seshaiyer, A stability estimate for fluid structure interaction problem with non-linear beam,, DCDS-S, 2009 (): 424.   Google Scholar

[30]

T. Kim, S. Čanić and G. Guidoboni, Existence and uniqueness of a solution to a three-dimensional axially symmetric biot problem arising in modeling blood flow,, Communications on Pure and Applied Analysis, 9 (2010), 839.  doi: 10.3934/cpaa.2010.9.839.  Google Scholar

[31]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a nonlinear fluid structure interaction system,, J. Diff. Eq., 247 (2009), 1452.  doi: 10.1016/j.jde.2009.06.005.  Google Scholar

[32]

I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary,, Nonlinearity, 24 (2011), 159.  doi: 10.1088/0951-7715/24/1/008.  Google Scholar

[33]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories," Volumes I and II,, Cambridge, (2000).   Google Scholar

[34]

I.Lasiecka and A. Tuffaha, Optimal feedback synthesis for bolza control problem arising in linearized fluid structure interaction,, in, 158 (2009), 171.  doi: 10.1007/978-3-7643-8923-9_10.  Google Scholar

[35]

J.-L. Lions, "Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[36]

P. I. Plotnikov and J. Sokolowski, Shape derivative of drag functional,, SIAM J. Control Optim., 48 (2010), 4680.  doi: 10.1137/090758179.  Google Scholar

[37]

J. A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid,, Arch. Ration. Mech. Anal., 161 (2002), 113.  doi: 10.1007/s002050100172.  Google Scholar

[38]

J. Sokolowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[39]

B. N. Steele, D. Valdez-Jasso, M. A. Haider and M. S. Olufsen, Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall,, SIAM J. Appl. Math., 71 (2011), 1123.  doi: 10.1137/100810186.  Google Scholar

[40]

D. Tataru, On the regularity of boundary traces for the wave equation,, Annali di Scuola Normale Sup. Pisa Cl. Sci. (4), 26 (1998), 185.   Google Scholar

[41]

J.-P. Zolésio, Weak shape formulation of free boundary problems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 11.   Google Scholar

[1]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[2]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[3]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[4]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[5]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[6]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[7]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[8]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[9]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[10]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[11]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[12]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[13]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[14]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[15]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[16]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[17]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[18]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[19]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

[20]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]