Citation: |
[1] |
O. Arena and W. Littman, Boundary Control of Two PDE's Separated by Interface Conditions, J. Syst. Sci. Complex, 23 (2010), 431-437.doi: 10.1007/s11424-010-0138-7. |
[2] |
O. Arena and W. Littman, Null Boundary Controllability of the Schrödinger Equation with a Potential, Proceedings $7^{th}$ Int. ISAAC Congress (July 2009), Progress in Analysis and its Applications, (M. Ruzhansky and J. Wirth Eds.) 2010.doi: 10.1142/9789814313179_0046. |
[3] |
G. Avalos and I. Lasiecka, The null controllability of thermo-elastic plates and singularity of the associated minimal energy function, J. Math. Anal. Appl., 294 (2004), 34-61.doi: 10.1016/j.jmaa.2004.01.035. |
[4] |
L. Hörmander, Linear Partial Differential Operators, Academic Press, New York, 1963. |
[5] |
I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, a non conservative case, SIAM J. Control Opt., 27 (1989), 330-373.doi: 10.1137/0327018. |
[6] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control, Differential and Integral Equations, 5 (1992), 521-535. |
[7] |
W. Littman, Boundary control Theory for Beams and Plates, Proceedings, 24th Conference on Decision and Control, Ft. Lauderdale, FL, 2007-2009, December 1985.doi: 10.1109/CDC.1985.268511. |
[8] |
W. Littman and S. Taylor, Smoothing Evolution Equations and Boundary control theory. Festschrift on the occasion of the 70th birthday of Shmuel Agmon, Journal d'Analyse. Mathématique, 59 (1992), 117-131.doi: 10.1007/BF02790221. |
[9] |
W. Littman and S. Taylor, The heat and schrödinger equation boundary control with one shot, Control Methods in PDE-Dynamical Systems, Contemporary Math., 426, AMS, Providence, RI, (2007), 293-305.doi: 10.1090/conm/426/08194. |
[10] |
W. Littman and S. Taylor, The balayage method: Boundary control of a thermo-elastic plate, Applicationes Math., 35 (2008), 467-479.doi: 10.4064/am35-4-5. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[12] |
S. Taylor, Gevrey smoothing properties of the schrödinger evolution group in weighted sobodev spaces, Journal of Math. Anal. and Appl., 194 (1995), 14-38.doi: 10.1006/jmaa.1995.1284. |
[13] |
F. Trèves, Ovcyannikov Theorem and Hyperdifferential Operators, Notas de Matemática, No. 46 Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro 1968 iii+238 pp. |
[14] |
X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, Journal of Diff. Eq., 204 (2004), 380-438.doi: 10.1016/j.jde.2004.02.004. |
[15] |
E. Zuazua, Null Control of a 1-d Model of Mixed Hyperbolic-Parabolic Type, in: J. L. Menaldi et al., (Eds), Optimal Control and PDE, IOS Press, Amsterdam, 2001. |
[16] |
J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 262. Springer-Verlag, New York Inc., 1984.doi: 10.1007/978-1-4612-5208-5. |