-
Previous Article
Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability
- EECT Home
- This Issue
-
Next Article
Preface
A problem of boundary controllability for a plate
1. | Dipartimento di Architettura DIDA, Università degli Studi di Firenze, piazza Brunelleschi, 6 - 50121 Firenze, Italy |
References:
[1] |
O. Arena and W. Littman, Boundary Control of Two PDE's Separated by Interface Conditions, J. Syst. Sci. Complex, 23 (2010), 431-437.
doi: 10.1007/s11424-010-0138-7. |
[2] |
O. Arena and W. Littman, Null Boundary Controllability of the Schrödinger Equation with a Potential, Proceedings $7^{th}$ Int. ISAAC Congress (July 2009), Progress in Analysis and its Applications, (M. Ruzhansky and J. Wirth Eds.) 2010.
doi: 10.1142/9789814313179_0046. |
[3] |
G. Avalos and I. Lasiecka, The null controllability of thermo-elastic plates and singularity of the associated minimal energy function, J. Math. Anal. Appl., 294 (2004), 34-61.
doi: 10.1016/j.jmaa.2004.01.035. |
[4] |
L. Hörmander, Linear Partial Differential Operators, Academic Press, New York, 1963. |
[5] |
I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, a non conservative case, SIAM J. Control Opt., 27 (1989), 330-373.
doi: 10.1137/0327018. |
[6] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control, Differential and Integral Equations, 5 (1992), 521-535. |
[7] |
W. Littman, Boundary control Theory for Beams and Plates, Proceedings, 24th Conference on Decision and Control, Ft. Lauderdale, FL, 2007-2009, December 1985.
doi: 10.1109/CDC.1985.268511. |
[8] |
W. Littman and S. Taylor, Smoothing Evolution Equations and Boundary control theory. Festschrift on the occasion of the 70th birthday of Shmuel Agmon, Journal d'Analyse. Mathématique, 59 (1992), 117-131.
doi: 10.1007/BF02790221. |
[9] |
W. Littman and S. Taylor, The heat and schrödinger equation boundary control with one shot, Control Methods in PDE-Dynamical Systems, Contemporary Math., 426, AMS, Providence, RI, (2007), 293-305.
doi: 10.1090/conm/426/08194. |
[10] |
W. Littman and S. Taylor, The balayage method: Boundary control of a thermo-elastic plate, Applicationes Math., 35 (2008), 467-479.
doi: 10.4064/am35-4-5. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[12] |
S. Taylor, Gevrey smoothing properties of the schrödinger evolution group in weighted sobodev spaces, Journal of Math. Anal. and Appl., 194 (1995), 14-38.
doi: 10.1006/jmaa.1995.1284. |
[13] |
F. Trèves, Ovcyannikov Theorem and Hyperdifferential Operators, Notas de Matemática, No. 46 Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro 1968 iii+238 pp. |
[14] |
X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, Journal of Diff. Eq., 204 (2004), 380-438.
doi: 10.1016/j.jde.2004.02.004. |
[15] |
E. Zuazua, Null Control of a 1-d Model of Mixed Hyperbolic-Parabolic Type, in: J. L. Menaldi et al., (Eds), Optimal Control and PDE, IOS Press, Amsterdam, 2001. |
[16] |
J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 262. Springer-Verlag, New York Inc., 1984.
doi: 10.1007/978-1-4612-5208-5. |
show all references
References:
[1] |
O. Arena and W. Littman, Boundary Control of Two PDE's Separated by Interface Conditions, J. Syst. Sci. Complex, 23 (2010), 431-437.
doi: 10.1007/s11424-010-0138-7. |
[2] |
O. Arena and W. Littman, Null Boundary Controllability of the Schrödinger Equation with a Potential, Proceedings $7^{th}$ Int. ISAAC Congress (July 2009), Progress in Analysis and its Applications, (M. Ruzhansky and J. Wirth Eds.) 2010.
doi: 10.1142/9789814313179_0046. |
[3] |
G. Avalos and I. Lasiecka, The null controllability of thermo-elastic plates and singularity of the associated minimal energy function, J. Math. Anal. Appl., 294 (2004), 34-61.
doi: 10.1016/j.jmaa.2004.01.035. |
[4] |
L. Hörmander, Linear Partial Differential Operators, Academic Press, New York, 1963. |
[5] |
I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, a non conservative case, SIAM J. Control Opt., 27 (1989), 330-373.
doi: 10.1137/0327018. |
[6] |
I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control, Differential and Integral Equations, 5 (1992), 521-535. |
[7] |
W. Littman, Boundary control Theory for Beams and Plates, Proceedings, 24th Conference on Decision and Control, Ft. Lauderdale, FL, 2007-2009, December 1985.
doi: 10.1109/CDC.1985.268511. |
[8] |
W. Littman and S. Taylor, Smoothing Evolution Equations and Boundary control theory. Festschrift on the occasion of the 70th birthday of Shmuel Agmon, Journal d'Analyse. Mathématique, 59 (1992), 117-131.
doi: 10.1007/BF02790221. |
[9] |
W. Littman and S. Taylor, The heat and schrödinger equation boundary control with one shot, Control Methods in PDE-Dynamical Systems, Contemporary Math., 426, AMS, Providence, RI, (2007), 293-305.
doi: 10.1090/conm/426/08194. |
[10] |
W. Littman and S. Taylor, The balayage method: Boundary control of a thermo-elastic plate, Applicationes Math., 35 (2008), 467-479.
doi: 10.4064/am35-4-5. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[12] |
S. Taylor, Gevrey smoothing properties of the schrödinger evolution group in weighted sobodev spaces, Journal of Math. Anal. and Appl., 194 (1995), 14-38.
doi: 10.1006/jmaa.1995.1284. |
[13] |
F. Trèves, Ovcyannikov Theorem and Hyperdifferential Operators, Notas de Matemática, No. 46 Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro 1968 iii+238 pp. |
[14] |
X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, Journal of Diff. Eq., 204 (2004), 380-438.
doi: 10.1016/j.jde.2004.02.004. |
[15] |
E. Zuazua, Null Control of a 1-d Model of Mixed Hyperbolic-Parabolic Type, in: J. L. Menaldi et al., (Eds), Optimal Control and PDE, IOS Press, Amsterdam, 2001. |
[16] |
J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 262. Springer-Verlag, New York Inc., 1984.
doi: 10.1007/978-1-4612-5208-5. |
[1] |
Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023 |
[2] |
Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087 |
[3] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[4] |
Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161 |
[5] |
Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791 |
[6] |
Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878 |
[7] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[8] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[9] |
Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143 |
[10] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[11] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[12] |
Idriss Boutaayamou, Lahcen Maniar, Omar Oukdach. Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021044 |
[13] |
Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070 |
[14] |
Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457 |
[15] |
Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179 |
[16] |
Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010 |
[17] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[18] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit. The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6529-6546. doi: 10.3934/dcds.2020289 |
[19] |
Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 |
[20] |
Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control and Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]