Advanced Search
Article Contents
Article Contents

Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability

Abstract Related Papers Cited by
  • We consider a coupled parabolic--hyperbolic PDE system arising in fluid--structure interaction, where the coupling is exercised at the interface between the two media. This paper is a study in contrast on stability properties of the overall coupled system under two scenarios: the case with interior dissipation of the structure, and the case without. In the first case, uniform stabilization is achieved (by a $\lambda$-domain analysis) without geometrical conditions on the structure, but only on an explicitly identified space $Ĥ$ of codimension one with respect to the original energy state space $H$ where semigroup well-posedness holds. In the second case, only rational (a fortiori strong) stability is possible, again only on the space $Ĥ$, however, under geometrical conditions of the structure, which e.g., exclude a sphere. Many classes of good geometries are identified. Recent papers [6,9] show uniform stabilization on all of $H$, and without geometrical conditions; however, with dissipation at the boundary interface.
    Mathematics Subject Classification: Primary: 35M13, 93D20.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Avalos, The strong stability and instability of a fluid-structure semigroup, Appl. Math. & Optimiz., 55 (2007), 163-184.doi: 10.1007/s00245-006-0884-z.


    G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Applicationes Mathematicae, 35 (2008), 259-280.doi: 10.4064/am35-3-2.


    G. Avalos, I. Lasiecka, and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, invited paper, special issue of Georgian Math. J., 15 (2008), 403-437; dedicated to the memory of J. L. Lions.


    G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface, 2012.


    G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties, Fluids and Waves, AMS Contemp. Math., 440 (2007), 15-54.doi: 10.1090/conm/440/08475.


    G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. Cont. Dynam. Sys., 22 (2008), 817-835, special issue.doi: 10.3934/dcds.2008.22.817.


    G. Avalos and R. Triggiani, Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discr. Cont. Dynam. Sys., 2 (2009), 417-447.doi: 10.3934/dcdss.2009.2.417.


    G. Avalos and R. Triggiani, Coupled Parabolic-Hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis, Applicable Analysis, 88 (2009), 1357-1396.doi: 10.1080/00036810903278513.


    G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370.doi: 10.1007/s00028-009-0015-9.


    G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evolution Equations and Control Theory, 2 (2013), to appear.


    G. Avalos and R. Triggiani, Rational decay rates for a PDE fluid-structure interaction via a resolvent operator approach, 2012.


    V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions, Fluids and Waves, AMS Contemp. Math., 440 (2007), 55-82.


    L. Bers, F. John and M. Schechter, Partial Differential Equations, John Wiley 1964, reprinted by AMS Lectures in Applied Mathematics


    A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.doi: 10.1007/s00208-009-0439-0.


    K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups, Stud. Sci. Math. Hung., 30 (1995), 162-182.


    H. Cohen and S. I. Rubinow, Some mathematical topics in biology, Proc. Symp. on System Theory Polytechnic Press, New York (1965), 321-337.


    P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press, Chicago, 1988.


    Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. Contin. Dynam. Sys., 9 (2003), 633-650.doi: 10.3934/dcds.2003.9.633.


    T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface, Asymptotic Analysis, 51 (2007), 17-45.


    L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904.doi: 10.1093/imamat/hxq038.


    V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, 1994.


    S. G. Krein, Linear Differential Equations in Banach Space, Vol. 29, Translations of Mathematical Monographs, AMS 1971, 390 pp.


    J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Diff. Eqns., 50 (1983), 163-182.doi: 10.1016/0022-0396(83)90073-6.


    I. Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes elastic wave interaction. Semigroup Forum, 82 (2011), 61-82.doi: 10.1007/s00233-010-9281-7.


    I. Lasiecka and Y. Lu, Interface feedback control stabilization of a nonlinear fluid-structure interaction. Nonlinear Analysis, 75 (2012), 1449-1460.doi: 10.1016/j.na.2011.04.018.


    I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures et Appl., 65 (1986), 149-192.


    I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control, Appl. Math. Optimiz., 19 (1986), 243-290. (Also, preliminary version in Springer Verlag Lecture Notes, 100 (1987), 316-371.)doi: 10.1007/BF01448201.


    I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.doi: 10.1007/BF01182480.


    I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equationjs of Neumann type, Part I: The $L_2$ boundary case, Annali Matem. Pura e Applicata, 157 (1990), 285-367.


    I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli Equations, Applied. Math. Optimiz., 28 (1993), 277-306.doi: 10.1007/BF01200382.


    I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions, Rocky Mountain J. Math., 30 (2000), 981-1023.doi: 10.1216/rmjm/1021477256.


    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations Vol. I, Cambridge University Press, New York, 2000.


    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations Vol. II, Cambridge University Press, New York, 2000.


    N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach, IEEE Trans. Circuits & Sys., 25 (1978), 721-727.doi: 10.1109/TCS.1978.1084539.


    J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris, 1969.


    J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, 1972.


    W. Littman and L. Markus, Stabilization of a hybrid-type of elasticity by feedback boundary damping, Annali di Matem. Pura, 152 (1988), 281-330.


    Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach space, Stud. Math. LXXXVII (1988), 721-727.


    V.P. Mikhailov, Partial Differential Equations, MIR Publishers Moscow, 1978.


    L. Monauni, Exponential decay of solutions to Cauchy's Abstract problem as determined by the extended spectrum of the dynamic operator. Unpublished manuscript, 1981 (MIT Report).


    J. Pruss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.doi: 10.2307/1999112.


    J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh, 77A (1977), 97-112.


    J. M. Rivera, private communication, May 2012.


    J. E. M. Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, JMAA, 326 (2007), 691-707.doi: 10.1016/j.jmaa.2006.03.022.


    J. E. M. Rivera, M. G. Naso, and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order system with memory, JMAA, 286 (2003), 692-704.doi: 10.1016/S0022-247X(03)00511-0.


    D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639-740.doi: 10.1137/1020095.


    H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts, 2001, 367 pp.doi: 10.1007/978-3-0348-8255-2.


    A. E. Taylor and D. C. Lay, Introduciton to Functional Analysis, 2nd ed., John Wiley, New YHork, 1980.


    R. Temam, Navier-Stokes Equations, North Holland, 1979.


    R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems, Springer-Verlag Lecture Notes in Control and Information Sciences, 6 (1978), 380-390.


    R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems, Appl. Math. Optimiz., 18 (1988), 241-277. (Also, preliminary version in Springer-Verlag Lecture Notes, 102 (1987), 291-332; Proceedings of Workshop on Control for Distributed Parameter Systems, University of Graz, Austria (July 1986)).doi: 10.1007/BF01443625.


    R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, J. Math. Anal. Appl., 137 (1989), 438-461.doi: 10.1016/0022-247X(89)90255-2.


    E. C. Zachmanoglou and D. W. Thoe, Introduction to Partial Differential Equations with Applications, The Williams and Wilkins Company, Baltimore, 1976, 404 pp.


    X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction, Arch. Rat. Mech. Anal., 184 (2007), 49-120.doi: 10.1007/s00205-006-0020-x.

  • 加载中

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint