\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A remark on Littman's method of boundary controllability

Abstract Related Papers Cited by
  • We extend the method of exact boundary controllability of strictly hyperbolic equations developed by W. Littman [22,23] to a large class of hyperbolic systems with constant coefficients. Our approach is based on the knowledge of the singularities of the fundamental solution of hyperbolic operators.
    Mathematics Subject Classification: Primary: 35Q93; Secondary: 53L99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Atiyah, R. Bott and L. G$\dota$rding, Lacunas for hyperbolic differential operators with constant coefficients. I, Acta Mathematica, 124 (1970), 109-189.doi: 10.1007/BF02394570.

    [2]

    M. Atiyah, R. Bott and L. G$\dota$rding, Lacunas for hyperbolic differential operators with constant coefficients. II, Acta Mathematica, 131 (1973), 145-206.doi: 10.1007/BF02392039.

    [3]

    L. Ahlfors, Complex Analysis, An introduction to the theory of analytic functions of one complex variable. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.

    [4]

    F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems, SIAM Journal on Control and Optimization, 37 (1999), 521-542.doi: 10.1137/S0363012996313835.

    [5]

    C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization, 30 (1992), 1024-1065.doi: 10.1137/0330055.

    [6]

    M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems, in Studies in Mathematics and its Applications, 31, North-Holland, (2002), 329-349.doi: 10.1016/S0168-2024(02)80016-9.

    [7]

    M. Eller, Continuous observability for the anisotropic Maxwell system, Applied Mathematics and Optimization, 55 (2007), 185-201.doi: 10.1007/s00245-006-0886-x.

    [8]

    M. Eller and D. Toundykov, A global Holmgren theorem for multidimensional hyperbolic partial differential equations, Applicable Analysis, 91 (2012), 69-90.doi: 10.1080/00036811.2010.538685.

    [9]

    R. Gulliver and W. Littman, Chord uniqueness and controllability: The view from the boundary. I, in Contemporary Mathematics, 268, American Mathematical Society, (2000), 145-175.doi: 10.1090/conm/268/04312.

    [10]

    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations Of Second Order, second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983.

    [11]

    L. Ho, Observabilité frontière de l'équation des ondes, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique, 302 (1986), 443-446.

    [12]

    L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, L'Enseignement Mathématique. Revue Internationale. IIe Série, 17 (1971), 99-163.

    [13]

    L. Hörmander, The Analysis Of Linear Partial Differential Operators. I, Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256. Springer-Verlag, Berlin, 1983.

    [14]

    L. Hörmander, The Analysis Of Linear Partial Differential Operators. II, Differential operators with constant coefficients. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257. Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-642-96750-4.

    [15]

    M. A. Horn, Exact controllability of the Euler-Bernoulli plate via bending moments only on the space of optimal regularity, Journal of Mathematical Analysis and Applications, 167 (1992), 557-581.doi: 10.1016/0022-247X(92)90224-2.

    [16]

    F. John, Partial Differential Equations, fourth edition, Springer-Verlag, New York, 1991.

    [17]

    J. E. Lagnese, Exact boundary controllability of Maxwell's equations in a general region, SIAM Journal on Control and Optimization, 27 (1989), 374-388.doi: 10.1137/0327019.

    [18]

    I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Applied Mathematics and Optimization, 19 (1989), 243-290.doi: 10.1007/BF01448201.

    [19]

    I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Applied Mathematics and Optimization, 25 (1992), 189-224.doi: 10.1007/BF01182480.

    [20]

    I. Lasiecka, R. Triggiani and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot, in Contemporary Mathematics, 268, American Mathematical Society, (2000), 227-325.doi: 10.1090/conm/268/04315.

    [21]

    J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.doi: 10.1137/1030001.

    [22]

    W. Littman, Near optimal time boundary controllability for a class of hyperbolic equations, in Lecture Notes in Control and Information Science, 97, Springer-Verlag, (1987), 307-312.doi: 10.1007/BFb0038763.

    [23]

    W. Littman, A remark on boundary control on manifolds, in Lecture Notes in Pure and Applied Mathematics, 242, Chapman & Hall/CRC, (2005), 175-181.doi: 10.1201/9781420028317.ch11.

    [24]

    W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory, Journal d'Analyse Mathématique, 59 (1992), 117-131.doi: 10.1007/BF02790221.

    [25]

    R. Melrose and G. Uhlmann, Microlocal structure of involutive conical refraction, Duke Mathematical Journal, 46 (1979), 571-582.doi: 10.1215/S0012-7094-79-04630-1.

    [26]

    N. Ortner and P. Wagner, On conical refraction in hexagonal and cubic media, SIAM Journal on Applied Mathematics, 70 (2009), 1239-1259.doi: 10.1137/080736636.

    [27]

    D. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Review, 20 (1978), 639-739.doi: 10.1137/1020095.

    [28]

    R. Sakamoto, Hyperbolic Boundary Value Problems, Translated from the Japanese by Katsumi Miyahara. Cambridge University Press, Cambridge-New York, 1982.

    [29]

    D. Tataru, Boundary controllability for conservative PDEs, Applied Mathematics and Optimization, 31 (1995), 257-295.

    [30]

    D. Tataru, On the regularity of boundary traces for the wave equation, Annali della Scuola Normale Superiore di Pisa, 26 (1998), 185-206.

    [31]

    M. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, 34. Princeton University Press, Princeton, N.J., 1981.

    [32]

    R. Triggiani, Regularity theory, exact controllability, and optimal quadratic cost problem for spherical shells with physical boundary controls, Control and Cybernetics, 25 (1996), 553-568.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return