December  2013, 2(4): 631-667. doi: 10.3934/eect.2013.2.631

Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions

1. 

Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States

2. 

Department of Mathematics, University of Memphis, Memphis, TN 38152-3370, IBS, Polish Academy of Sciences, Warsaw, Poland

Received  April 2013 Revised  September 2013 Published  November 2013

We present an analysis of regularity and stability of solutions corresponding to wave equation with dynamic boundary conditions. It has been known since the pioneering work by [26, 27, 30] that addition of dynamics to the boundary may change drastically both regularity and stability properties of the underlying system. We shall investigate these properties in the context of wave equation with the damping affecting either the interior dynamics or the boundary dynamics or both.
    This leads to a consideration of a wave equation acting on a bounded 3-d domain coupled with another second order dynamics acting on the boundary. The wave equation is equipped with a viscoelastic damping, zero Dirichlet boundary conditions on a portion of the boundary and dynamic boundary conditions. These are general Wentzell type of boundary conditions which describe wave equation oscillating on a tangent manifold of a lower dimension. We shall examine regularity and stability properties of the resulting system -as a function of strength and location of the dissipation. Properties such as well-posedness of finite energy solutions, analyticity of the associated semigroup, strong and uniform stability will be discussed.
    The results obtained analytically are illustrated by numerical analysis. The latter shows the impact of various types of dissipation on the spectrum of the generator as well as the dynamic behavior of the solution on a rectangular domain.
Citation: Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631
References:
[1]

B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions,, Journal of Differential Equations, 207 (2004), 1.  doi: 10.1016/j.jde.2003.12.005.  Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[3]

G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system,, Semigroup Forum, 57 (1998), 278.  doi: 10.1007/PL00005977.  Google Scholar

[4]

G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate,, Nonlinear Anal. Real World Appl., 12 (2011), 2985.  doi: 10.1016/j.nonrwa.2011.05.001.  Google Scholar

[5]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276.  doi: 10.1090/S0002-9904-1974-13714-6.  Google Scholar

[6]

J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[7]

J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar

[8]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Texts in Applied Mathematics, (1994).   Google Scholar

[9]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[10]

S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,, SIAM J. Appl. Dyn. Syst., 2 (2003), 431.  doi: 10.1137/S1111111102411286.  Google Scholar

[11]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[12]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition,, Journal of Evolution Equations, 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[13]

A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317.  doi: 10.1017/S0308210500003905.  Google Scholar

[14]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[15]

B. Friedman, Principles and Techniques of Applied Mathematics,, John Wiley & Sons, (1956).   Google Scholar

[16]

C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations,, Journal of Evolution Equations, 3 (2003), 623.  doi: 10.1007/s00028-003-0113-z.  Google Scholar

[17]

S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions,, Nonlinear Anal., 74 (2011), 7137.  doi: 10.1016/j.na.2011.07.026.  Google Scholar

[18]

S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Adv. Differential Equations, 13 (2008), 1051.   Google Scholar

[19]

P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions,, Appl. Math. Optim., 66 (2012), 81.  doi: 10.1007/s00245-012-9165-1.  Google Scholar

[20]

P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, Journal of Evolution Equations, 12 (2012), 141.  doi: 10.1007/s00028-011-0127-x.  Google Scholar

[21]

A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations,, Evolution Equations and Control Theory, 2 (2013), 101.  doi: 10.3934/eect.2013.2.101.  Google Scholar

[22]

M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part,, In: Modelling and optimization of distributed parameter systems, (1996), 104.   Google Scholar

[23]

M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part,, In: Control of partial differential equations and applications, 174 (1996), 101.   Google Scholar

[24]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[25]

W. Littman, The wave operator and $L_p$ norms,, J. Math. Mech., 12 (1963), 55.   Google Scholar

[26]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193.  doi: 10.1007/BF00251758.  Google Scholar

[27]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Annali di Matematica Pura ed Applicata, 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[28]

W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory,, J. Anal. Math., 59 (1992), 117.  doi: 10.1007/BF02790221.  Google Scholar

[29]

W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control,, In: Differential equations, 152 (1994), 683.   Google Scholar

[30]

W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow,, SIAM J. Appl. Math., 59 (1999), 17.  doi: 10.1137/S0036139996314106.  Google Scholar

[31]

W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot,, In: Control Methods in PDE-dynamical Systems, 426 (2007), 293.  doi: 10.1090/conm/426/08194.  Google Scholar

[32]

G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow,, Pacific J. Math., 11 (1961), 679.  doi: 10.2140/pjm.1961.11.679.  Google Scholar

[33]

T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator,, International Journal of Robust and Nonlinear Control, 21 (2011), 542.  doi: 10.1002/rnc.1611.  Google Scholar

[34]

P. M. Morse and K. U. Ingard, Theoretical Acoustics,, Princeton University Press, (1987).   Google Scholar

[35]

D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.  doi: 10.1002/mana.200310362.  Google Scholar

[36]

D. Mugnolo, Damped wave equations with dynamic boundary conditions,, J. Appl. Anal., 17 (2011), 241.  doi: 10.1515/JAA.2011.015.  Google Scholar

[37]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[38]

M. Renardy, On the stability of differentiability of semigroups,, Semigroup Forum, 51 (1995), 343.  doi: 10.1007/BF02573642.  Google Scholar

[39]

S. Taylor, Gevrey's Semigroups,, Ph.D. Thesis, (1989).   Google Scholar

[40]

S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, J. Math. Anal. Appl., 194 (1995), 14.  doi: 10.1006/jmaa.1995.1284.  Google Scholar

[41]

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,, Second edition. Springer Series in Computational Mathematics, (2006).   Google Scholar

[42]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach,, In: Operator methods for optimal control problems, 108 (1987), 283.   Google Scholar

[43]

R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models,, Annual Review of Biomedical Engineering, 5 (2003), 413.   Google Scholar

[44]

T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions,, Mathematische Annalen, 327 (2003), 351.  doi: 10.1007/s00208-003-0457-2.  Google Scholar

[45]

T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition,, J. Differential Equations, 200 (2004), 105.  doi: 10.1016/j.jde.2004.01.011.  Google Scholar

[46]

T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions,, Trans. Amer. Math. Soc., 356 (2004), 4787.  doi: 10.1090/S0002-9947-04-03704-3.  Google Scholar

show all references

References:
[1]

B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions,, Journal of Differential Equations, 207 (2004), 1.  doi: 10.1016/j.jde.2003.12.005.  Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[3]

G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system,, Semigroup Forum, 57 (1998), 278.  doi: 10.1007/PL00005977.  Google Scholar

[4]

G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate,, Nonlinear Anal. Real World Appl., 12 (2011), 2985.  doi: 10.1016/j.nonrwa.2011.05.001.  Google Scholar

[5]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276.  doi: 10.1090/S0002-9904-1974-13714-6.  Google Scholar

[6]

J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.  doi: 10.1512/iumj.1976.25.25071.  Google Scholar

[7]

J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.  doi: 10.1512/iumj.1977.26.26015.  Google Scholar

[8]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Texts in Applied Mathematics, (1994).   Google Scholar

[9]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[10]

S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,, SIAM J. Appl. Dyn. Syst., 2 (2003), 431.  doi: 10.1137/S1111111102411286.  Google Scholar

[11]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[12]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition,, Journal of Evolution Equations, 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[13]

A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317.  doi: 10.1017/S0308210500003905.  Google Scholar

[14]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[15]

B. Friedman, Principles and Techniques of Applied Mathematics,, John Wiley & Sons, (1956).   Google Scholar

[16]

C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations,, Journal of Evolution Equations, 3 (2003), 623.  doi: 10.1007/s00028-003-0113-z.  Google Scholar

[17]

S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions,, Nonlinear Anal., 74 (2011), 7137.  doi: 10.1016/j.na.2011.07.026.  Google Scholar

[18]

S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Adv. Differential Equations, 13 (2008), 1051.   Google Scholar

[19]

P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions,, Appl. Math. Optim., 66 (2012), 81.  doi: 10.1007/s00245-012-9165-1.  Google Scholar

[20]

P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, Journal of Evolution Equations, 12 (2012), 141.  doi: 10.1007/s00028-011-0127-x.  Google Scholar

[21]

A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations,, Evolution Equations and Control Theory, 2 (2013), 101.  doi: 10.3934/eect.2013.2.101.  Google Scholar

[22]

M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part,, In: Modelling and optimization of distributed parameter systems, (1996), 104.   Google Scholar

[23]

M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part,, In: Control of partial differential equations and applications, 174 (1996), 101.   Google Scholar

[24]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[25]

W. Littman, The wave operator and $L_p$ norms,, J. Math. Mech., 12 (1963), 55.   Google Scholar

[26]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193.  doi: 10.1007/BF00251758.  Google Scholar

[27]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Annali di Matematica Pura ed Applicata, 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[28]

W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory,, J. Anal. Math., 59 (1992), 117.  doi: 10.1007/BF02790221.  Google Scholar

[29]

W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control,, In: Differential equations, 152 (1994), 683.   Google Scholar

[30]

W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow,, SIAM J. Appl. Math., 59 (1999), 17.  doi: 10.1137/S0036139996314106.  Google Scholar

[31]

W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot,, In: Control Methods in PDE-dynamical Systems, 426 (2007), 293.  doi: 10.1090/conm/426/08194.  Google Scholar

[32]

G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow,, Pacific J. Math., 11 (1961), 679.  doi: 10.2140/pjm.1961.11.679.  Google Scholar

[33]

T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator,, International Journal of Robust and Nonlinear Control, 21 (2011), 542.  doi: 10.1002/rnc.1611.  Google Scholar

[34]

P. M. Morse and K. U. Ingard, Theoretical Acoustics,, Princeton University Press, (1987).   Google Scholar

[35]

D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.  doi: 10.1002/mana.200310362.  Google Scholar

[36]

D. Mugnolo, Damped wave equations with dynamic boundary conditions,, J. Appl. Anal., 17 (2011), 241.  doi: 10.1515/JAA.2011.015.  Google Scholar

[37]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[38]

M. Renardy, On the stability of differentiability of semigroups,, Semigroup Forum, 51 (1995), 343.  doi: 10.1007/BF02573642.  Google Scholar

[39]

S. Taylor, Gevrey's Semigroups,, Ph.D. Thesis, (1989).   Google Scholar

[40]

S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, J. Math. Anal. Appl., 194 (1995), 14.  doi: 10.1006/jmaa.1995.1284.  Google Scholar

[41]

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,, Second edition. Springer Series in Computational Mathematics, (2006).   Google Scholar

[42]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach,, In: Operator methods for optimal control problems, 108 (1987), 283.   Google Scholar

[43]

R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models,, Annual Review of Biomedical Engineering, 5 (2003), 413.   Google Scholar

[44]

T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions,, Mathematische Annalen, 327 (2003), 351.  doi: 10.1007/s00208-003-0457-2.  Google Scholar

[45]

T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition,, J. Differential Equations, 200 (2004), 105.  doi: 10.1016/j.jde.2004.01.011.  Google Scholar

[46]

T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions,, Trans. Amer. Math. Soc., 356 (2004), 4787.  doi: 10.1090/S0002-9947-04-03704-3.  Google Scholar

[1]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[2]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[3]

George Avalos. Strong stability of PDE semigroups via a generator resolvent criterion. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 207-218. doi: 10.3934/dcdss.2008.1.207

[4]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[5]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[6]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[7]

Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control & Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049

[8]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[9]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[10]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[11]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[12]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[13]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[14]

V. Casarino, K.-J. Engel, G. Nickel, S. Piazzera. Decoupling techniques for wave equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 761-772. doi: 10.3934/dcds.2005.12.761

[15]

Katarzyna PichÓr, Ryszard Rudnicki. Stability of stochastic semigroups and applications to Stein's neuronal model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 377-385. doi: 10.3934/dcdsb.2018026

[16]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[17]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[18]

Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033

[19]

Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115

[20]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020040

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]