-
Previous Article
Control of blow-up singularities for nonlinear wave equations
- EECT Home
- This Issue
-
Next Article
A remark on Littman's method of boundary controllability
Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions
1. | Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States |
2. | Department of Mathematics, University of Memphis, Memphis, TN 38152-3370, IBS, Polish Academy of Sciences, Warsaw, Poland |
This leads to a consideration of a wave equation acting on a bounded 3-d domain coupled with another second order dynamics acting on the boundary. The wave equation is equipped with a viscoelastic damping, zero Dirichlet boundary conditions on a portion of the boundary and dynamic boundary conditions. These are general Wentzell type of boundary conditions which describe wave equation oscillating on a tangent manifold of a lower dimension. We shall examine regularity and stability properties of the resulting system -as a function of strength and location of the dissipation. Properties such as well-posedness of finite energy solutions, analyticity of the associated semigroup, strong and uniform stability will be discussed.
The results obtained analytically are illustrated by numerical analysis. The latter shows the impact of various types of dissipation on the spectrum of the generator as well as the dynamic behavior of the solution on a rectangular domain.
References:
[1] |
B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions,, Journal of Differential Equations, 207 (2004), 1.
doi: 10.1016/j.jde.2003.12.005. |
[2] |
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[3] |
G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system,, Semigroup Forum, 57 (1998), 278.
doi: 10.1007/PL00005977. |
[4] |
G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate,, Nonlinear Anal. Real World Appl., 12 (2011), 2985.
doi: 10.1016/j.nonrwa.2011.05.001. |
[5] |
J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276.
doi: 10.1090/S0002-9904-1974-13714-6. |
[6] |
J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.
doi: 10.1512/iumj.1976.25.25071. |
[7] |
J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.
doi: 10.1512/iumj.1977.26.26015. |
[8] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Texts in Applied Mathematics, (1994).
|
[9] |
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.
doi: 10.1007/s00208-009-0439-0. |
[10] |
S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,, SIAM J. Appl. Dyn. Syst., 2 (2003), 431.
doi: 10.1137/S1111111102411286. |
[11] |
S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.
doi: 10.2140/pjm.1989.136.15. |
[12] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition,, Journal of Evolution Equations, 2 (2002), 1.
doi: 10.1007/s00028-002-8077-y. |
[13] |
A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317.
doi: 10.1017/S0308210500003905. |
[14] |
A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.
doi: 10.1002/mana.200910086. |
[15] |
B. Friedman, Principles and Techniques of Applied Mathematics,, John Wiley & Sons, (1956).
|
[16] |
C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations,, Journal of Evolution Equations, 3 (2003), 623.
doi: 10.1007/s00028-003-0113-z. |
[17] |
S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions,, Nonlinear Anal., 74 (2011), 7137.
doi: 10.1016/j.na.2011.07.026. |
[18] |
S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Adv. Differential Equations, 13 (2008), 1051.
|
[19] |
P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions,, Appl. Math. Optim., 66 (2012), 81.
doi: 10.1007/s00245-012-9165-1. |
[20] |
P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, Journal of Evolution Equations, 12 (2012), 141.
doi: 10.1007/s00028-011-0127-x. |
[21] |
A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations,, Evolution Equations and Control Theory, 2 (2013), 101.
doi: 10.3934/eect.2013.2.101. |
[22] |
M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part,, In: Modelling and optimization of distributed parameter systems, (1996), 104.
|
[23] |
M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part,, In: Control of partial differential equations and applications, 174 (1996), 101.
|
[24] |
J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.
doi: 10.1016/0022-0396(83)90073-6. |
[25] |
W. Littman, The wave operator and $L_p$ norms,, J. Math. Mech., 12 (1963), 55.
|
[26] |
W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193.
doi: 10.1007/BF00251758. |
[27] |
W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Annali di Matematica Pura ed Applicata, 152 (1988), 281.
doi: 10.1007/BF01766154. |
[28] |
W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory,, J. Anal. Math., 59 (1992), 117.
doi: 10.1007/BF02790221. |
[29] |
W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control,, In: Differential equations, 152 (1994), 683.
|
[30] |
W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow,, SIAM J. Appl. Math., 59 (1999), 17.
doi: 10.1137/S0036139996314106. |
[31] |
W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot,, In: Control Methods in PDE-dynamical Systems, 426 (2007), 293.
doi: 10.1090/conm/426/08194. |
[32] |
G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow,, Pacific J. Math., 11 (1961), 679.
doi: 10.2140/pjm.1961.11.679. |
[33] |
T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator,, International Journal of Robust and Nonlinear Control, 21 (2011), 542.
doi: 10.1002/rnc.1611. |
[34] |
P. M. Morse and K. U. Ingard, Theoretical Acoustics,, Princeton University Press, (1987). Google Scholar |
[35] |
D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.
doi: 10.1002/mana.200310362. |
[36] |
D. Mugnolo, Damped wave equations with dynamic boundary conditions,, J. Appl. Anal., 17 (2011), 241.
doi: 10.1515/JAA.2011.015. |
[37] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[38] |
M. Renardy, On the stability of differentiability of semigroups,, Semigroup Forum, 51 (1995), 343.
doi: 10.1007/BF02573642. |
[39] |
S. Taylor, Gevrey's Semigroups,, Ph.D. Thesis, (1989). Google Scholar |
[40] |
S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, J. Math. Anal. Appl., 194 (1995), 14.
doi: 10.1006/jmaa.1995.1284. |
[41] |
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,, Second edition. Springer Series in Computational Mathematics, (2006).
|
[42] |
R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach,, In: Operator methods for optimal control problems, 108 (1987), 283.
|
[43] |
R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models,, Annual Review of Biomedical Engineering, 5 (2003), 413. Google Scholar |
[44] |
T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions,, Mathematische Annalen, 327 (2003), 351.
doi: 10.1007/s00208-003-0457-2. |
[45] |
T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition,, J. Differential Equations, 200 (2004), 105.
doi: 10.1016/j.jde.2004.01.011. |
[46] |
T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions,, Trans. Amer. Math. Soc., 356 (2004), 4787.
doi: 10.1090/S0002-9947-04-03704-3. |
show all references
References:
[1] |
B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions,, Journal of Differential Equations, 207 (2004), 1.
doi: 10.1016/j.jde.2003.12.005. |
[2] |
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[3] |
G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system,, Semigroup Forum, 57 (1998), 278.
doi: 10.1007/PL00005977. |
[4] |
G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate,, Nonlinear Anal. Real World Appl., 12 (2011), 2985.
doi: 10.1016/j.nonrwa.2011.05.001. |
[5] |
J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions,, Bull. Amer. Math. Soc., 80 (1974), 1276.
doi: 10.1090/S0002-9904-1974-13714-6. |
[6] |
J. T. Beale, Spectral properties of an acoustic boundary condition,, Indiana Univ. Math. J., 25 (1976), 895.
doi: 10.1512/iumj.1976.25.25071. |
[7] |
J. T. Beale, Acoustic scattering from locally reacting surfaces,, Indiana Univ. Math. J., 26 (1977), 199.
doi: 10.1512/iumj.1977.26.26015. |
[8] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Texts in Applied Mathematics, (1994).
|
[9] |
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.
doi: 10.1007/s00208-009-0439-0. |
[10] |
S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,, SIAM J. Appl. Dyn. Syst., 2 (2003), 431.
doi: 10.1137/S1111111102411286. |
[11] |
S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific J. Math., 136 (1989), 15.
doi: 10.2140/pjm.1989.136.15. |
[12] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition,, Journal of Evolution Equations, 2 (2002), 1.
doi: 10.1007/s00028-002-8077-y. |
[13] |
A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317.
doi: 10.1017/S0308210500003905. |
[14] |
A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.
doi: 10.1002/mana.200910086. |
[15] |
B. Friedman, Principles and Techniques of Applied Mathematics,, John Wiley & Sons, (1956).
|
[16] |
C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations,, Journal of Evolution Equations, 3 (2003), 623.
doi: 10.1007/s00028-003-0113-z. |
[17] |
S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions,, Nonlinear Anal., 74 (2011), 7137.
doi: 10.1016/j.na.2011.07.026. |
[18] |
S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions,, Adv. Differential Equations, 13 (2008), 1051.
|
[19] |
P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions,, Appl. Math. Optim., 66 (2012), 81.
doi: 10.1007/s00245-012-9165-1. |
[20] |
P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping,, Journal of Evolution Equations, 12 (2012), 141.
doi: 10.1007/s00028-011-0127-x. |
[21] |
A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations,, Evolution Equations and Control Theory, 2 (2013), 101.
doi: 10.3934/eect.2013.2.101. |
[22] |
M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part,, In: Modelling and optimization of distributed parameter systems, (1996), 104.
|
[23] |
M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part,, In: Control of partial differential equations and applications, 174 (1996), 101.
|
[24] |
J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Differential Equations, 50 (1983), 163.
doi: 10.1016/0022-0396(83)90073-6. |
[25] |
W. Littman, The wave operator and $L_p$ norms,, J. Math. Mech., 12 (1963), 55.
|
[26] |
W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193.
doi: 10.1007/BF00251758. |
[27] |
W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Annali di Matematica Pura ed Applicata, 152 (1988), 281.
doi: 10.1007/BF01766154. |
[28] |
W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory,, J. Anal. Math., 59 (1992), 117.
doi: 10.1007/BF02790221. |
[29] |
W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control,, In: Differential equations, 152 (1994), 683.
|
[30] |
W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow,, SIAM J. Appl. Math., 59 (1999), 17.
doi: 10.1137/S0036139996314106. |
[31] |
W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot,, In: Control Methods in PDE-dynamical Systems, 426 (2007), 293.
doi: 10.1090/conm/426/08194. |
[32] |
G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow,, Pacific J. Math., 11 (1961), 679.
doi: 10.2140/pjm.1961.11.679. |
[33] |
T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator,, International Journal of Robust and Nonlinear Control, 21 (2011), 542.
doi: 10.1002/rnc.1611. |
[34] |
P. M. Morse and K. U. Ingard, Theoretical Acoustics,, Princeton University Press, (1987). Google Scholar |
[35] |
D. Mugnolo, Abstract wave equations with acoustic boundary conditions,, Math. Nachr., 279 (2006), 299.
doi: 10.1002/mana.200310362. |
[36] |
D. Mugnolo, Damped wave equations with dynamic boundary conditions,, J. Appl. Anal., 17 (2011), 241.
doi: 10.1515/JAA.2011.015. |
[37] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[38] |
M. Renardy, On the stability of differentiability of semigroups,, Semigroup Forum, 51 (1995), 343.
doi: 10.1007/BF02573642. |
[39] |
S. Taylor, Gevrey's Semigroups,, Ph.D. Thesis, (1989). Google Scholar |
[40] |
S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, J. Math. Anal. Appl., 194 (1995), 14.
doi: 10.1006/jmaa.1995.1284. |
[41] |
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,, Second edition. Springer Series in Computational Mathematics, (2006).
|
[42] |
R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach,, In: Operator methods for optimal control problems, 108 (1987), 283.
|
[43] |
R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models,, Annual Review of Biomedical Engineering, 5 (2003), 413. Google Scholar |
[44] |
T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions,, Mathematische Annalen, 327 (2003), 351.
doi: 10.1007/s00208-003-0457-2. |
[45] |
T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition,, J. Differential Equations, 200 (2004), 105.
doi: 10.1016/j.jde.2004.01.011. |
[46] |
T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions,, Trans. Amer. Math. Soc., 356 (2004), 4787.
doi: 10.1090/S0002-9947-04-03704-3. |
[1] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[2] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[3] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[4] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[5] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[6] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[7] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[8] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[9] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[10] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[11] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[12] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[13] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[14] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[15] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[16] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[17] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[18] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[19] |
Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275 |
[20] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]