-
Previous Article
Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress
- EECT Home
- This Issue
-
Next Article
Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions
Control of blow-up singularities for nonlinear wave equations
1. | Laboratoire de Mathématiques, Université de Reims Champagne-Ardenne, Moulin de la Housse, B.P. 1039, F-51687 Reims Cedex 2, France |
References:
[1] |
C. Bardos, Distributed control and observation, in Control of fluid flow, (eds. Koumoutsakos, Petros et al. (ed.),), Lecture Notes in Control and Information Sciences 330, Springer, (2006), 139-156.
doi: 10.1007/978-3-540-36085-8_6. |
[2] |
G. Cabart, Singularités en Optique Non Linéaire: Etude Mathématique,, Thèse de Doctorat, ().
|
[3] |
G. Cabart and S. Kichenassamy, Explosion et normes $L^p$ pour l'équation des ondes non linéaire cubique, C. R. Acad. Sci. Paris, Séer. I, 335 (2002), 903-908.
doi: 10.1016/S1631-073X(02)02606-7. |
[4] |
W. C. Chewning, Controllability of the nonlinear wave equation in several space variables, SIAM J. Control, 14 (1976), 19-25.
doi: 10.1137/0314002. |
[5] |
M. Cirinà, Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control, 7 (1969), 198-212.
doi: 10.1137/0307014. |
[6] |
B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. ENS, (4), 36 (2003), 525-551.
doi: 10.1016/S0012-9593(03)00021-1. |
[7] |
D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., Second Series, 92 (1970), 102-163.
doi: 10.2307/1970699. |
[8] |
H. O. Fattorini, Local controllability of a nonlinear wave equation, Mathem. Systems Theory, 9 (1975), 30-45.
doi: 10.1007/BF01698123. |
[9] |
S. Kichenassamy, Fuchsian Reduction: Applications to Geometry, Cosmology and Mathematical Physics, Progress in Nonlinear Differential Equations and their Applications, 71. Birkhäuser Boston, Inc., Boston, MA, 2007. |
[10] |
S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part I, Commun. in P. D. E., 18 (1993), 431-452.
doi: 10.1080/03605309308820936. |
[11] |
S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part II, Commun. in P. D. E., 18 (1993), 1869-1899.
doi: 10.1080/03605309308820997. |
[12] |
I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates, Appl. Math. Optim., 23 (1991), 109-154.
doi: 10.1007/BF01442394. |
[13] |
I. Lasiecka and R. Triggiani, Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument, Discr. Cont. Dyn. Syst., Suppl., (2005), 556-565. |
[14] |
J. L. Lions, Contrôlabilité exacte, perturbations et systèmes distribués, Tome 1, Rech. Math. Appl. 8, Masson, Paris, 1988. |
[15] |
W. Littman, Aspects of boundary control theory, in Differential Equations and Mathematical Physics, (ed. C. Bennewitz) Math. in Sci. and Engineering, 186 (1992), 201-215.
doi: 10.1016/S0076-5392(08)63381-0. |
[16] |
W. Littman, Boundary control theory for hyperbolic and parabolic linear partial differential equations with constant coefficients, Ann. Sc. Norm. Sup. Pisa, ser IV, 5 (1978), 567-580. |
[17] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 679-739.
doi: 10.1137/1020095. |
[18] |
D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic equations, Studies in Appl. Math., 52 (1973), 189-211. |
[19] |
M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.
doi: 10.1007/978-1-4612-0431-2. |
[20] |
Y. Zhou and Z. Lei, Local exact boundary controllability for nonlinear wave equations, SIAM J. Control Optim., 46 (2007), 1022-1051.
doi: 10.1137/060650222. |
[21] |
E. Zuazua, Exact controllability for the semilinear wave equation, J. Math. Pures Appl., 69 (1990), 1-31. |
[22] |
E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. X (Paris, 1987-1988), (eds. H. Brezis and J.-L. Lions), Pitman, (1991), 357-391. |
[23] |
E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Differential Equations, vol. 3(eds. C. M. Dafermos and E. Feireisl eds.), Elsevier Science, (2006), 527-621.
doi: 10.1016/S1874-5717(07)80010-7. |
[24] |
X. Zhang and E. Zuazua, Exact Controllability of the Semi-Linear Wave Equation, (2010), available from http://institucional.us.es/doc-course-imus/PDF/XZhang-EZ_Open_Problems.pdf |
show all references
References:
[1] |
C. Bardos, Distributed control and observation, in Control of fluid flow, (eds. Koumoutsakos, Petros et al. (ed.),), Lecture Notes in Control and Information Sciences 330, Springer, (2006), 139-156.
doi: 10.1007/978-3-540-36085-8_6. |
[2] |
G. Cabart, Singularités en Optique Non Linéaire: Etude Mathématique,, Thèse de Doctorat, ().
|
[3] |
G. Cabart and S. Kichenassamy, Explosion et normes $L^p$ pour l'équation des ondes non linéaire cubique, C. R. Acad. Sci. Paris, Séer. I, 335 (2002), 903-908.
doi: 10.1016/S1631-073X(02)02606-7. |
[4] |
W. C. Chewning, Controllability of the nonlinear wave equation in several space variables, SIAM J. Control, 14 (1976), 19-25.
doi: 10.1137/0314002. |
[5] |
M. Cirinà, Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control, 7 (1969), 198-212.
doi: 10.1137/0307014. |
[6] |
B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. ENS, (4), 36 (2003), 525-551.
doi: 10.1016/S0012-9593(03)00021-1. |
[7] |
D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., Second Series, 92 (1970), 102-163.
doi: 10.2307/1970699. |
[8] |
H. O. Fattorini, Local controllability of a nonlinear wave equation, Mathem. Systems Theory, 9 (1975), 30-45.
doi: 10.1007/BF01698123. |
[9] |
S. Kichenassamy, Fuchsian Reduction: Applications to Geometry, Cosmology and Mathematical Physics, Progress in Nonlinear Differential Equations and their Applications, 71. Birkhäuser Boston, Inc., Boston, MA, 2007. |
[10] |
S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part I, Commun. in P. D. E., 18 (1993), 431-452.
doi: 10.1080/03605309308820936. |
[11] |
S. Kichenassamy and W. Littman, Blow-up surfaces for nonlinear wave equations, Part II, Commun. in P. D. E., 18 (1993), 1869-1899.
doi: 10.1080/03605309308820997. |
[12] |
I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates, Appl. Math. Optim., 23 (1991), 109-154.
doi: 10.1007/BF01442394. |
[13] |
I. Lasiecka and R. Triggiani, Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument, Discr. Cont. Dyn. Syst., Suppl., (2005), 556-565. |
[14] |
J. L. Lions, Contrôlabilité exacte, perturbations et systèmes distribués, Tome 1, Rech. Math. Appl. 8, Masson, Paris, 1988. |
[15] |
W. Littman, Aspects of boundary control theory, in Differential Equations and Mathematical Physics, (ed. C. Bennewitz) Math. in Sci. and Engineering, 186 (1992), 201-215.
doi: 10.1016/S0076-5392(08)63381-0. |
[16] |
W. Littman, Boundary control theory for hyperbolic and parabolic linear partial differential equations with constant coefficients, Ann. Sc. Norm. Sup. Pisa, ser IV, 5 (1978), 567-580. |
[17] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 679-739.
doi: 10.1137/1020095. |
[18] |
D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic equations, Studies in Appl. Math., 52 (1973), 189-211. |
[19] |
M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.
doi: 10.1007/978-1-4612-0431-2. |
[20] |
Y. Zhou and Z. Lei, Local exact boundary controllability for nonlinear wave equations, SIAM J. Control Optim., 46 (2007), 1022-1051.
doi: 10.1137/060650222. |
[21] |
E. Zuazua, Exact controllability for the semilinear wave equation, J. Math. Pures Appl., 69 (1990), 1-31. |
[22] |
E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. X (Paris, 1987-1988), (eds. H. Brezis and J.-L. Lions), Pitman, (1991), 357-391. |
[23] |
E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Differential Equations, vol. 3(eds. C. M. Dafermos and E. Feireisl eds.), Elsevier Science, (2006), 527-621.
doi: 10.1016/S1874-5717(07)80010-7. |
[24] |
X. Zhang and E. Zuazua, Exact Controllability of the Semi-Linear Wave Equation, (2010), available from http://institucional.us.es/doc-course-imus/PDF/XZhang-EZ_Open_Problems.pdf |
[1] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[2] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[3] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[4] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[5] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[6] |
Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130 |
[7] |
Mengxian Lv, Jianghao Hao. General decay and blow-up for coupled Kirchhoff wave equations with dynamic boundary conditions. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021058 |
[8] |
Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370 |
[9] |
Tayeb Hadj Kaddour, Michael Reissig. Blow-up results for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2687-2707. doi: 10.3934/cpaa.2020239 |
[10] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[11] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[12] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[13] |
Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 |
[14] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[15] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[16] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[17] |
Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 |
[18] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[19] |
Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082 |
[20] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]