December  2013, 2(4): 679-693. doi: 10.3934/eect.2013.2.679

Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress

1. 

Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033, United States

Received  December 2012 Revised  July 2013 Published  November 2013

By introducing some auxiliary functions, an elasticity system with thermal effects becomes a coupled hyperbolic-parabolic system. Using this reduced system, we obtain a Carleman estimate with two large parameters for the linear thermoelasticity system with residual stress which is the basic tool for showing stability estimates in the lateral Cauchy problem.
Citation: Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations & Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679
References:
[1]

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system,, Electronic J. of Diff. Eqns., 22 (2000), 1. Google Scholar

[2]

M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the themoelasticity system,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/1/015006. Google Scholar

[3]

M. Eller and V. Isakov, Carleman estimates with two large parameters and applications,, Contemp. Math., 268 (2000), 117. doi: 10.1090/conm/268/04310. Google Scholar

[4]

M. Eller, I. Lasiecka and R. Triggiani, Simultaneous Exact/Approximate Boundary Controllability of Thermo-Elastic Plates with Variable Thermal Coefficient and Moment Control,, J. of Mathematical Analysis and Applications, 251 (2000), 452. doi: 10.1006/jmaa.2000.7015. Google Scholar

[5]

L. Hörmander, Linear Partial Differential Operators,, Springer-Verlag, (1976). Google Scholar

[6]

V. Isakov, A Nonhyperbolic Cauchy Problem for $\square_b$, $square_c$ and its Applications to elasticity Theory,, Comm. Pure Appl. Math., 39 (1986), 747. doi: 10.1002/cpa.3160390603. Google Scholar

[7]

V. Isakov, On the uniqueness of the continuation for a thermoelasticity system,, SIAM J. Math. Anal., 33 (2001), 509. doi: 10.1137/S0036141000366509. Google Scholar

[8]

V. Isakov, Inverse Problems for Partial Differential Equations,, Second edition. Applied Mathematical Sciences, (2006). Google Scholar

[9]

V. Isakov, Carleman estimates for some anisotropic elasticity systems and applications,, Evolution Equations and Control Theory, 1 (2012), 141. doi: 10.3934/eect.2012.1.141. Google Scholar

[10]

V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress,, Contemp. Math. AMS, 333 (2003), 99. doi: 10.1090/conm/333/05957. Google Scholar

[11]

V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress,, Applicationes Mathematicae, 35 (2008), 447. doi: 10.4064/am35-4-4. Google Scholar

[12]

V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators,, Some application of Sobolev spaces to PDEs, 10 (2009), 135. doi: 10.1007/978-0-387-85652-0_3. Google Scholar

[13]

V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second order operators and applications to elasticity with residual stress,, Discrete Cont. Dyn. Systems-A, 27 (2010), 799. doi: 10.3934/dcds.2010.27.799. Google Scholar

[14]

I. Lasiecka and R. Triggiani, Analyticity of thermo-Elastic semigroups with free boundary conditions,, Ann. Scuola Norm. Sup. Pisa CI. Sci., 27 (1998), 457. Google Scholar

[15]

C.-S. Man, Hartig's law and linear elasticity with initial stress,, Inverse Problems, 14 (1998), 313. doi: 10.1088/0266-5611/14/2/007. Google Scholar

[16]

B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095012. Google Scholar

show all references

References:
[1]

P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system,, Electronic J. of Diff. Eqns., 22 (2000), 1. Google Scholar

[2]

M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the themoelasticity system,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/1/015006. Google Scholar

[3]

M. Eller and V. Isakov, Carleman estimates with two large parameters and applications,, Contemp. Math., 268 (2000), 117. doi: 10.1090/conm/268/04310. Google Scholar

[4]

M. Eller, I. Lasiecka and R. Triggiani, Simultaneous Exact/Approximate Boundary Controllability of Thermo-Elastic Plates with Variable Thermal Coefficient and Moment Control,, J. of Mathematical Analysis and Applications, 251 (2000), 452. doi: 10.1006/jmaa.2000.7015. Google Scholar

[5]

L. Hörmander, Linear Partial Differential Operators,, Springer-Verlag, (1976). Google Scholar

[6]

V. Isakov, A Nonhyperbolic Cauchy Problem for $\square_b$, $square_c$ and its Applications to elasticity Theory,, Comm. Pure Appl. Math., 39 (1986), 747. doi: 10.1002/cpa.3160390603. Google Scholar

[7]

V. Isakov, On the uniqueness of the continuation for a thermoelasticity system,, SIAM J. Math. Anal., 33 (2001), 509. doi: 10.1137/S0036141000366509. Google Scholar

[8]

V. Isakov, Inverse Problems for Partial Differential Equations,, Second edition. Applied Mathematical Sciences, (2006). Google Scholar

[9]

V. Isakov, Carleman estimates for some anisotropic elasticity systems and applications,, Evolution Equations and Control Theory, 1 (2012), 141. doi: 10.3934/eect.2012.1.141. Google Scholar

[10]

V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress,, Contemp. Math. AMS, 333 (2003), 99. doi: 10.1090/conm/333/05957. Google Scholar

[11]

V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress,, Applicationes Mathematicae, 35 (2008), 447. doi: 10.4064/am35-4-4. Google Scholar

[12]

V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators,, Some application of Sobolev spaces to PDEs, 10 (2009), 135. doi: 10.1007/978-0-387-85652-0_3. Google Scholar

[13]

V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second order operators and applications to elasticity with residual stress,, Discrete Cont. Dyn. Systems-A, 27 (2010), 799. doi: 10.3934/dcds.2010.27.799. Google Scholar

[14]

I. Lasiecka and R. Triggiani, Analyticity of thermo-Elastic semigroups with free boundary conditions,, Ann. Scuola Norm. Sup. Pisa CI. Sci., 27 (1998), 457. Google Scholar

[15]

C.-S. Man, Hartig's law and linear elasticity with initial stress,, Inverse Problems, 14 (1998), 313. doi: 10.1088/0266-5611/14/2/007. Google Scholar

[16]

B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/9/095012. Google Scholar

[1]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[2]

Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[5]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[6]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[7]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[8]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[9]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[10]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[11]

Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417

[12]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[13]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[14]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[15]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[16]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[17]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[18]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[19]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[20]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]