\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress

Abstract Related Papers Cited by
  • By introducing some auxiliary functions, an elasticity system with thermal effects becomes a coupled hyperbolic-parabolic system. Using this reduced system, we obtain a Carleman estimate with two large parameters for the linear thermoelasticity system with residual stress which is the basic tool for showing stability estimates in the lateral Cauchy problem.
    Mathematics Subject Classification: Primary: 35L51, 35M30; Secondary: 35K10, 58J35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electronic J. of Diff. Eqns., 22 (2000), 1-15.

    [2]

    M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the themoelasticity system, Inverse Problems, 27 (2011), 18pp.doi: 10.1088/0266-5611/27/1/015006.

    [3]

    M. Eller and V. Isakov, Carleman estimates with two large parameters and applications, Contemp. Math., AMS, 268 (2000), 117-137.doi: 10.1090/conm/268/04310.

    [4]

    M. Eller, I. Lasiecka and R. Triggiani, Simultaneous Exact/Approximate Boundary Controllability of Thermo-Elastic Plates with Variable Thermal Coefficient and Moment Control, J. of Mathematical Analysis and Applications, 251 (2000), 452-478.doi: 10.1006/jmaa.2000.7015.

    [5]

    L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-New York, 1976.

    [6]

    V. Isakov, A Nonhyperbolic Cauchy Problem for $\square_b$, $square_c$ and its Applications to elasticity Theory, Comm. Pure Appl. Math., 39 (1986), 747-767.doi: 10.1002/cpa.3160390603.

    [7]

    V. Isakov, On the uniqueness of the continuation for a thermoelasticity system, SIAM J. Math. Anal., 33 (2001), 509-522.doi: 10.1137/S0036141000366509.

    [8]

    V. Isakov, Inverse Problems for Partial Differential Equations, Second edition. Applied Mathematical Sciences, 127. Springer, New York, 2006.

    [9]

    V. Isakov, Carleman estimates for some anisotropic elasticity systems and applications, Evolution Equations and Control Theory, 1 (2012), 141-154.doi: 10.3934/eect.2012.1.141.

    [10]

    V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress, Contemp. Math. AMS, 333 (2003), 99-113.doi: 10.1090/conm/333/05957.

    [11]

    V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress, Applicationes Mathematicae, 35 (2008), 447-465.doi: 10.4064/am35-4-4.

    [12]

    V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators, Some application of Sobolev spaces to PDEs, International Math. Ser., Springer-Verlag, 10 (2009), 135-159.doi: 10.1007/978-0-387-85652-0_3.

    [13]

    V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second order operators and applications to elasticity with residual stress, Discrete Cont. Dyn. Systems-A, 27 (2010), 799-825.doi: 10.3934/dcds.2010.27.799.

    [14]

    I. Lasiecka and R. Triggiani, Analyticity of thermo-Elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa CI. Sci., 27 (1998), 457-482.

    [15]

    C.-S. Man, Hartig's law and linear elasticity with initial stress, Inverse Problems, 14 (1998), 313-319.doi: 10.1088/0266-5611/14/2/007.

    [16]

    B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect, Inverse Problems, 28 (2012), 17pp.doi: 10.1088/0266-5611/28/9/095012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return