-
Previous Article
Uniform stabilization of a multilayer Rao-Nakra sandwich beam
- EECT Home
- This Issue
-
Next Article
Control of blow-up singularities for nonlinear wave equations
Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress
1. | Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033, United States |
References:
[1] |
P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electronic J. of Diff. Eqns., 22 (2000), 1-15. |
[2] |
M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the themoelasticity system, Inverse Problems, 27 (2011), 18pp.
doi: 10.1088/0266-5611/27/1/015006. |
[3] |
M. Eller and V. Isakov, Carleman estimates with two large parameters and applications, Contemp. Math., AMS, 268 (2000), 117-137.
doi: 10.1090/conm/268/04310. |
[4] |
M. Eller, I. Lasiecka and R. Triggiani, Simultaneous Exact/Approximate Boundary Controllability of Thermo-Elastic Plates with Variable Thermal Coefficient and Moment Control, J. of Mathematical Analysis and Applications, 251 (2000), 452-478.
doi: 10.1006/jmaa.2000.7015. |
[5] |
L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-New York, 1976. |
[6] |
V. Isakov, A Nonhyperbolic Cauchy Problem for $\square_b$, $square_c$ and its Applications to elasticity Theory, Comm. Pure Appl. Math., 39 (1986), 747-767.
doi: 10.1002/cpa.3160390603. |
[7] |
V. Isakov, On the uniqueness of the continuation for a thermoelasticity system, SIAM J. Math. Anal., 33 (2001), 509-522.
doi: 10.1137/S0036141000366509. |
[8] |
V. Isakov, Inverse Problems for Partial Differential Equations, Second edition. Applied Mathematical Sciences, 127. Springer, New York, 2006. |
[9] |
V. Isakov, Carleman estimates for some anisotropic elasticity systems and applications, Evolution Equations and Control Theory, 1 (2012), 141-154.
doi: 10.3934/eect.2012.1.141. |
[10] |
V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress, Contemp. Math. AMS, 333 (2003), 99-113.
doi: 10.1090/conm/333/05957. |
[11] |
V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress, Applicationes Mathematicae, 35 (2008), 447-465.
doi: 10.4064/am35-4-4. |
[12] |
V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators, Some application of Sobolev spaces to PDEs, International Math. Ser., Springer-Verlag, 10 (2009), 135-159.
doi: 10.1007/978-0-387-85652-0_3. |
[13] |
V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second order operators and applications to elasticity with residual stress, Discrete Cont. Dyn. Systems-A, 27 (2010), 799-825.
doi: 10.3934/dcds.2010.27.799. |
[14] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-Elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa CI. Sci., 27 (1998), 457-482. |
[15] |
C.-S. Man, Hartig's law and linear elasticity with initial stress, Inverse Problems, 14 (1998), 313-319.
doi: 10.1088/0266-5611/14/2/007. |
[16] |
B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect, Inverse Problems, 28 (2012), 17pp.
doi: 10.1088/0266-5611/28/9/095012. |
show all references
References:
[1] |
P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electronic J. of Diff. Eqns., 22 (2000), 1-15. |
[2] |
M. Bellassoued and M. Yamamoto, Carleman estimates and an inverse heat source problem for the themoelasticity system, Inverse Problems, 27 (2011), 18pp.
doi: 10.1088/0266-5611/27/1/015006. |
[3] |
M. Eller and V. Isakov, Carleman estimates with two large parameters and applications, Contemp. Math., AMS, 268 (2000), 117-137.
doi: 10.1090/conm/268/04310. |
[4] |
M. Eller, I. Lasiecka and R. Triggiani, Simultaneous Exact/Approximate Boundary Controllability of Thermo-Elastic Plates with Variable Thermal Coefficient and Moment Control, J. of Mathematical Analysis and Applications, 251 (2000), 452-478.
doi: 10.1006/jmaa.2000.7015. |
[5] |
L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-New York, 1976. |
[6] |
V. Isakov, A Nonhyperbolic Cauchy Problem for $\square_b$, $square_c$ and its Applications to elasticity Theory, Comm. Pure Appl. Math., 39 (1986), 747-767.
doi: 10.1002/cpa.3160390603. |
[7] |
V. Isakov, On the uniqueness of the continuation for a thermoelasticity system, SIAM J. Math. Anal., 33 (2001), 509-522.
doi: 10.1137/S0036141000366509. |
[8] |
V. Isakov, Inverse Problems for Partial Differential Equations, Second edition. Applied Mathematical Sciences, 127. Springer, New York, 2006. |
[9] |
V. Isakov, Carleman estimates for some anisotropic elasticity systems and applications, Evolution Equations and Control Theory, 1 (2012), 141-154.
doi: 10.3934/eect.2012.1.141. |
[10] |
V. Isakov, G. Nakamura and J.-N. Wang, Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress, Contemp. Math. AMS, 333 (2003), 99-113.
doi: 10.1090/conm/333/05957. |
[11] |
V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress, Applicationes Mathematicae, 35 (2008), 447-465.
doi: 10.4064/am35-4-4. |
[12] |
V. Isakov and N. Kim, Carleman estimates with second large parameter for second order operators, Some application of Sobolev spaces to PDEs, International Math. Ser., Springer-Verlag, 10 (2009), 135-159.
doi: 10.1007/978-0-387-85652-0_3. |
[13] |
V. Isakov and N. Kim, Weak Carleman estimates with large parameters for second order operators and applications to elasticity with residual stress, Discrete Cont. Dyn. Systems-A, 27 (2010), 799-825.
doi: 10.3934/dcds.2010.27.799. |
[14] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-Elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa CI. Sci., 27 (1998), 457-482. |
[15] |
C.-S. Man, Hartig's law and linear elasticity with initial stress, Inverse Problems, 14 (1998), 313-319.
doi: 10.1088/0266-5611/14/2/007. |
[16] |
B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect, Inverse Problems, 28 (2012), 17pp.
doi: 10.1088/0266-5611/28/9/095012. |
[1] |
Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799 |
[2] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[3] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[4] |
Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199 |
[5] |
Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 |
[6] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[7] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[8] |
Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088 |
[9] |
Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541 |
[10] |
Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 |
[11] |
Moniba Shams. Wave-propagation in an incompressible hollow elastic cylinder with residual stress. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2877-2904. doi: 10.3934/dcdss.2020123 |
[12] |
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems and Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229 |
[13] |
Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133 |
[14] |
Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016 |
[15] |
Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417 |
[16] |
Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 |
[17] |
Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 |
[18] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[19] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[20] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]