December  2013, 2(4): 711-721. doi: 10.3934/eect.2013.2.711

Trace properties of certain damped linear elastic systems

1. 

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-123, United States

Received  November 2012 Revised  September 2013 Published  November 2013

We study the spectrum of a damped linear elastic system with discrete eigenvalues, showing the relationship between the sum of the real parts of the eigenvalues of the (generally unbounded) generator and the trace of the damping operator, assuming the latter to be a trace type operator. Some relationships between the sequence of eigenvectors and a corresponding orthonormal sequence, constructed by means of a variant of the Gram-Schmidt method, are also explored. A simple hybrid system is presented as an example of application.
Citation: David L. Russell. Trace properties of certain damped linear elastic systems. Evolution Equations & Control Theory, 2013, 2 (4) : 711-721. doi: 10.3934/eect.2013.2.711
References:
[1]

N. Dunford and J. T. Schwartz, Linear Operators. Part II: Spectral Theory; Self Adjoint Operators in Hilbert Space,, Pure & Applied Mathematics, (1963).   Google Scholar

[2]

T. Kato, Perturbation Theory for Linear Operators,, Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[3]

I. M. Gelfand and B. M. Levitan, On a simple identity for the characteristic values of a differential operator of the second order, (Russian),, Doklady Akad. Nauk SSSR (N.S.), 88 (1953), 593.   Google Scholar

[4]

W. Littman and L. W. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Mat. Pura Appl., 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[5]

F. G. Maksudov, M. Bairamogly and A. A. Adygezalov, The regularized trace of the Sturm-Liouville operator on a finite segment with an unbounded operator coefficient, (Russian),, Dokl. Akad. Nauk SSSR, 277 (1984), 795.   Google Scholar

show all references

References:
[1]

N. Dunford and J. T. Schwartz, Linear Operators. Part II: Spectral Theory; Self Adjoint Operators in Hilbert Space,, Pure & Applied Mathematics, (1963).   Google Scholar

[2]

T. Kato, Perturbation Theory for Linear Operators,, Die Grundlehren der mathematischen Wissenschaften, (1966).   Google Scholar

[3]

I. M. Gelfand and B. M. Levitan, On a simple identity for the characteristic values of a differential operator of the second order, (Russian),, Doklady Akad. Nauk SSSR (N.S.), 88 (1953), 593.   Google Scholar

[4]

W. Littman and L. W. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Mat. Pura Appl., 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[5]

F. G. Maksudov, M. Bairamogly and A. A. Adygezalov, The regularized trace of the Sturm-Liouville operator on a finite segment with an unbounded operator coefficient, (Russian),, Dokl. Akad. Nauk SSSR, 277 (1984), 795.   Google Scholar

[1]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[2]

Ai-Ling Yan, Gao-Yang Wang, Naihua Xiu. Robust solutions of split feasibility problem with uncertain linear operator. Journal of Industrial & Management Optimization, 2007, 3 (4) : 749-761. doi: 10.3934/jimo.2007.3.749

[3]

Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583

[4]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[5]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[6]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[7]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[8]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[9]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[10]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[11]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems & Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[12]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[13]

Tanja Eisner, Rainer Nagel. Arithmetic progressions -- an operator theoretic view. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 657-667. doi: 10.3934/dcdss.2013.6.657

[14]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[15]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[16]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic & Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[17]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[18]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[19]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[20]

Yucheng Bu, Yujun Dong. Existence of solutions for nonlinear operator equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4429-4441. doi: 10.3934/dcds.2019180

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]