December  2013, 2(4): 733-740. doi: 10.3934/eect.2013.2.733

Locally smooth unitary groups and applications to boundary control of PDEs

1. 

Mathematics Department, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Received  July 2013 Revised  September 2013 Published  November 2013

Let $\mathcal{P}$ be the projection operator for a closed subspace $\mathcal{S}$ of a Hilbert space $\mathcal{H}$ and let $U$ be a unitary operator on $\mathcal{H}$. We consider the questions
    1. Under what conditions is $\mathcal{P}U\mathcal{P}$ a strict contraction?
    2. If $g$, $h\in \mathcal{S}$, can we find $f\in \mathcal{H}$ such that $\mathcal{P}f=g$ and $\mathcal{P}Uf=h$?
The results are abstract versions and generalisations of results developed for boundary control of partial differential equations. We discuss how these results can be used as tools in the direct construction of boundary controls.
Citation: Stephen W. Taylor. Locally smooth unitary groups and applications to boundary control of PDEs. Evolution Equations & Control Theory, 2013, 2 (4) : 733-740. doi: 10.3934/eect.2013.2.733
References:
[1]

M. Ben-Artzi and S. Klainerman, Decay and Regularity for the Schrödinger equation,, J. Anal. Math., 58 (1992), 25. doi: 10.1007/BF02790356. Google Scholar

[2]

N. Burq, Smoothing Effect for Schrödinger boundary value problems,, Duke Mathematical Journal, 123 (2004), 403. doi: 10.1215/S0012-7094-04-12326-7. Google Scholar

[3]

P. Constantin and J.-C. Saut, Local smoothing properties of Schrödinger equations,, Indiana Univ. Math. J., 38 (1989), 791. doi: 10.1512/iumj.1989.38.38037. Google Scholar

[4]

S.-I. Doi, Remarks on the Cauchy problem for Schrödinger-type equations,, Comm. Partial Differential Equations, 21 (1996), 163. doi: 10.1080/03605309608821178. Google Scholar

[5]

S.-I. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds,, Duke Math. J., 82 (1996), 679. doi: 10.1215/S0012-7094-96-08228-9. Google Scholar

[6]

S.-I. Doi, Smoothing effects for Schrödinger equation and global behaviour of geodesic flow,, Math. Ann., 318 (2000), 355. doi: 10.1007/s002080000128. Google Scholar

[7]

M. A. Horn and W. Littman, Boundary control of a Schrödinger Equation with nonconstant principal part,, Control of Partial Differential Equations and Applications, 174 (1996), 101. Google Scholar

[8]

I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of the Schrödinger equation with Dirichlet control,, Differential and Integral Equations, 5 (1992), 521. Google Scholar

[9]

I. Lasiecka, R. Triggiani and X. Zhang, Global Uniqueness, Observability and Stabilization of Nonconservative Schrödinger Equations via Pointwise Carleman Estimates. Part I: $H^1(\Omega)$-estimates,, J. Inverse and Ill-Posed Problems, 12 (2004), 1. doi: 10.1163/156939404773972761. Google Scholar

[10]

W. Littman, Boundary Control Theory for Beams and Plates,, Proceedings, (1985). doi: 10.1109/CDC.1985.268511. Google Scholar

[11]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193. doi: 10.1007/BF00251758. Google Scholar

[12]

W. Littman and S. W. Taylor, Smoothing evolution equations and boundary control theory,, J. d'Analyse Math., 59 (1992), 117. doi: 10.1007/BF02790221. Google Scholar

[13]

W. Littman and S. W. Taylor, Local Smoothing and Energy Decay for a Semi-Infinite Beam Pinned at Several Points and Applications to Boundary Control,, Differential Equations, 152 (1994), 683. Google Scholar

[14]

W. Littman and S. W. Taylor, The Heat and Schrödinger Equations: Boundary Control with One Shot,, Control methods in PDE-dynamical systems, 426 (2007), 293. doi: 10.1090/conm/426/08194. Google Scholar

[15]

W. Littman and S. W. Taylor, The balayage method: Boundary control of a thermo-elastic plate,, Applicationes Mathematicae, 35 (2008), 467. doi: 10.4064/am35-4-5. Google Scholar

[16]

E. Machtyngier, Controlabilité exact et stabilisation frontiere de l'equation de Schrödinger,, (French) [Exact boundary controllability and stabilizability for the Schr?dinger equation], 310 (1990), 801. Google Scholar

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[18]

D. Tataru, A priori estimates of Carleman's type in domains with boundary,, J. Math. Pures Appl., 73 (1994), 355. Google Scholar

[19]

D. Tataru, Boundary controllability for conservative PDEs,, Appl. Math. Optim., 31 (1995), 257. doi: 10.1007/BF01215993. Google Scholar

[20]

D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems,, J. Math. Pures Appl., 75 (1996), 367. Google Scholar

[21]

D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDEs,, Optimization methods in partial differential equations (South Hadley, 209 (1997), 267. doi: 10.1090/conm/209/02771. Google Scholar

[22]

S. W. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, Journal of Mathematical Analysis and Applications, 194 (1995), 14. doi: 10.1006/jmaa.1995.1284. Google Scholar

[23]

S. W. Taylor, Exact Boundary Controllability of a Beam and Mass System,, Computation and Control IV, (1995). Google Scholar

[24]

S. W. Taylor, A smoothing property of a hyperbolic system and boundary controllability,, Journal of Computational and Applied Mathematics, 114 (2000), 23. doi: 10.1016/S0377-0427(99)00286-1. Google Scholar

[25]

S. W. Taylor and S. Yau, Boundary Control of a Rotating Timoshenko Beam,, ANZIAM Journal, 44 (2003). Google Scholar

[26]

R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled non-conservative Schrödinger equations,, Dedicated to the memory of Pierre Grisvard. Rend. Istit. Mat. Univ. Trieste, 28 (1996), 453. Google Scholar

[27]

R. Triggiani and X. Xu, Pointwise Carleman Estimates, Global Uniqueness, Observability, and Stabilization for Schrödinger Equations on Riemannian Manifolds at the $H^1(\Omega)$-Level,, Control methods in PDE-dynamical systems, 426 (2007), 339. doi: 10.1090/conm/426/08197. Google Scholar

[28]

R. Triggiani and P. -F. Yao, Inverse/observability estimates for Schrödinger equations with variable coefficients,, Recent advances in control of PDEs. Control Cybernet, 28 (1999), 627. Google Scholar

show all references

References:
[1]

M. Ben-Artzi and S. Klainerman, Decay and Regularity for the Schrödinger equation,, J. Anal. Math., 58 (1992), 25. doi: 10.1007/BF02790356. Google Scholar

[2]

N. Burq, Smoothing Effect for Schrödinger boundary value problems,, Duke Mathematical Journal, 123 (2004), 403. doi: 10.1215/S0012-7094-04-12326-7. Google Scholar

[3]

P. Constantin and J.-C. Saut, Local smoothing properties of Schrödinger equations,, Indiana Univ. Math. J., 38 (1989), 791. doi: 10.1512/iumj.1989.38.38037. Google Scholar

[4]

S.-I. Doi, Remarks on the Cauchy problem for Schrödinger-type equations,, Comm. Partial Differential Equations, 21 (1996), 163. doi: 10.1080/03605309608821178. Google Scholar

[5]

S.-I. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds,, Duke Math. J., 82 (1996), 679. doi: 10.1215/S0012-7094-96-08228-9. Google Scholar

[6]

S.-I. Doi, Smoothing effects for Schrödinger equation and global behaviour of geodesic flow,, Math. Ann., 318 (2000), 355. doi: 10.1007/s002080000128. Google Scholar

[7]

M. A. Horn and W. Littman, Boundary control of a Schrödinger Equation with nonconstant principal part,, Control of Partial Differential Equations and Applications, 174 (1996), 101. Google Scholar

[8]

I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of the Schrödinger equation with Dirichlet control,, Differential and Integral Equations, 5 (1992), 521. Google Scholar

[9]

I. Lasiecka, R. Triggiani and X. Zhang, Global Uniqueness, Observability and Stabilization of Nonconservative Schrödinger Equations via Pointwise Carleman Estimates. Part I: $H^1(\Omega)$-estimates,, J. Inverse and Ill-Posed Problems, 12 (2004), 1. doi: 10.1163/156939404773972761. Google Scholar

[10]

W. Littman, Boundary Control Theory for Beams and Plates,, Proceedings, (1985). doi: 10.1109/CDC.1985.268511. Google Scholar

[11]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Archive for Rational Mechanics and Analysis, 103 (1988), 193. doi: 10.1007/BF00251758. Google Scholar

[12]

W. Littman and S. W. Taylor, Smoothing evolution equations and boundary control theory,, J. d'Analyse Math., 59 (1992), 117. doi: 10.1007/BF02790221. Google Scholar

[13]

W. Littman and S. W. Taylor, Local Smoothing and Energy Decay for a Semi-Infinite Beam Pinned at Several Points and Applications to Boundary Control,, Differential Equations, 152 (1994), 683. Google Scholar

[14]

W. Littman and S. W. Taylor, The Heat and Schrödinger Equations: Boundary Control with One Shot,, Control methods in PDE-dynamical systems, 426 (2007), 293. doi: 10.1090/conm/426/08194. Google Scholar

[15]

W. Littman and S. W. Taylor, The balayage method: Boundary control of a thermo-elastic plate,, Applicationes Mathematicae, 35 (2008), 467. doi: 10.4064/am35-4-5. Google Scholar

[16]

E. Machtyngier, Controlabilité exact et stabilisation frontiere de l'equation de Schrödinger,, (French) [Exact boundary controllability and stabilizability for the Schr?dinger equation], 310 (1990), 801. Google Scholar

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[18]

D. Tataru, A priori estimates of Carleman's type in domains with boundary,, J. Math. Pures Appl., 73 (1994), 355. Google Scholar

[19]

D. Tataru, Boundary controllability for conservative PDEs,, Appl. Math. Optim., 31 (1995), 257. doi: 10.1007/BF01215993. Google Scholar

[20]

D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems,, J. Math. Pures Appl., 75 (1996), 367. Google Scholar

[21]

D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDEs,, Optimization methods in partial differential equations (South Hadley, 209 (1997), 267. doi: 10.1090/conm/209/02771. Google Scholar

[22]

S. W. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces,, Journal of Mathematical Analysis and Applications, 194 (1995), 14. doi: 10.1006/jmaa.1995.1284. Google Scholar

[23]

S. W. Taylor, Exact Boundary Controllability of a Beam and Mass System,, Computation and Control IV, (1995). Google Scholar

[24]

S. W. Taylor, A smoothing property of a hyperbolic system and boundary controllability,, Journal of Computational and Applied Mathematics, 114 (2000), 23. doi: 10.1016/S0377-0427(99)00286-1. Google Scholar

[25]

S. W. Taylor and S. Yau, Boundary Control of a Rotating Timoshenko Beam,, ANZIAM Journal, 44 (2003). Google Scholar

[26]

R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled non-conservative Schrödinger equations,, Dedicated to the memory of Pierre Grisvard. Rend. Istit. Mat. Univ. Trieste, 28 (1996), 453. Google Scholar

[27]

R. Triggiani and X. Xu, Pointwise Carleman Estimates, Global Uniqueness, Observability, and Stabilization for Schrödinger Equations on Riemannian Manifolds at the $H^1(\Omega)$-Level,, Control methods in PDE-dynamical systems, 426 (2007), 339. doi: 10.1090/conm/426/08197. Google Scholar

[28]

R. Triggiani and P. -F. Yao, Inverse/observability estimates for Schrödinger equations with variable coefficients,, Recent advances in control of PDEs. Control Cybernet, 28 (1999), 627. Google Scholar

[1]

Uri Bader, Roman Muchnik. Boundary unitary representations-irreducibility and rigidity. Journal of Modern Dynamics, 2011, 5 (1) : 49-69. doi: 10.3934/jmd.2011.5.49

[2]

Uri Bader, Jan Dymara. Boundary unitary representations—right-angled hyperbolic buildings. Journal of Modern Dynamics, 2016, 10: 413-437. doi: 10.3934/jmd.2016.10.413

[3]

Orazio Arena. On some boundary control problems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 613-618. doi: 10.3934/dcdss.2016015

[4]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[5]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[6]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[7]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[8]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[9]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[12]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[13]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[14]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[15]

Percy A. Deift, Thomas Trogdon, Govind Menon. On the condition number of the critically-scaled Laguerre Unitary Ensemble. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4287-4347. doi: 10.3934/dcds.2016.36.4287

[16]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[17]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[18]

Chao Xu, Yimeng Dong, Zhigang Ren, Huachen Jiang, Xin Yu. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial & Management Optimization, 2015, 11 (1) : 199-216. doi: 10.3934/jimo.2015.11.199

[19]

Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40

[20]

Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control & Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]