March  2013, 2(1): 81-100. doi: 10.3934/eect.2013.2.81

Orbitally stable standing waves for the asymptotically linear one-dimensional NLS

1. 

Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

Received  September 2012 Revised  December 2012 Published  January 2013

In this article we study the one-dimensional, asymptotically linear, non-linear Schrödinger equation (NLS). We show the existence of a global smooth curve of standing waves for this problem, and we prove that these standing waves are orbitally stable. As far as we know, this is the first rigorous stability result for the asymptotically linear NLS. We also discuss an application of our results to self-focusing waveguides with a saturable refractive index.
Citation: François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations & Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81
References:
[1]

S. A. Akhmanov, R. V. Khokhlov and A. P. Sukhorukov, Self-Focusing, self-defocusing, and self-modulation of laser beams,, in, (1972), 1151.   Google Scholar

[2]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[3]

R. Y. Chiao, E. Garmire and C. H. Townes, Self-trapping of optical beams,, Phys. Rev. Lett., 13 (1964), 479.   Google Scholar

[4]

D. G. Costa and H. Tehrani, On a class of asymptotically linear elliptic problems in $\mathbb R^N$,, J. Differential Equations, 173 (2001), 470.  doi: 10.1006/jdeq.2000.3944.  Google Scholar

[5]

B. Crosignani, P. Di Porto, M. Segev, G. Salamo and A. Yariv, Nonlinear optical beam propagation and solitons in photorefractive media,, Riv. Nuovo Cimento, 21 (1998), 1.   Google Scholar

[6]

F. Genoud and C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves,, Discrete Contin. Dyn. Syst., 21 (2008), 137.  doi: 10.3934/dcds.2008.21.137.  Google Scholar

[7]

F. Genoud, Existence and orbital stability of standing waves for some nonlinear Schrödinger equations, perturbation of a model case,, J. Differential Equations, 246 (2009), 1921.  doi: 10.1016/j.jde.2008.10.029.  Google Scholar

[8]

F. Genoud, Bifurcation and stability of travelling waves in self- focusing planar waveguides,, Adv. Nonlinear Stud., 10 (2010), 357.   Google Scholar

[9]

F. Genoud, Bifurcation from infinity for an asymptotically linear problem on the half-line,, Nonlinear Anal., 74 (2011), 4533.  doi: 10.1016/j.na.2011.04.019.  Google Scholar

[10]

F. Genoud, Global bifurcation for asymptotically linear Schrödinger equations,, to appear in NoDEA Nonlinear Differential Equations Appl., ().  doi: 10.1007/s00030-012-0152-7.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", $2^{nd}$ Edition, (2001).   Google Scholar

[12]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[13]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787.  doi: 10.1017/S0308210500013147.  Google Scholar

[14]

L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbbR^N$ autonomous at infinity,, ESAIM Control Optim. Calc. Var., 7 (2002), 597.  doi: 10.1051/cocv:2002068.  Google Scholar

[15]

H. Jeanjean and C. A. Stuart, Nonlinear eigenvalue problems having an unbounded branch of symmetric bound states,, Adv. Differential Equations, 4 (1999), 639.   Google Scholar

[16]

J. B. McLeod, C. A. Stuart and W. C. Troy, Stability of standing waves for some nonlinear Schrödinger equations,, Differential Integral Equations, 16 (2003), 1025.   Google Scholar

[17]

P. J. Rabier and C. A. Stuart, Application of elliptic regularity to bifurcation in stationary nonlinear Schrödinger equations,, Nonlinear Anal., 52 (2003), 869.  doi: 10.1016/S0362-546X(02)00138-4.  Google Scholar

[18]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators,", Academic Press, (2003).   Google Scholar

[19]

B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics,", Wiley, (1991).   Google Scholar

[20]

Y. Sivan, G. Fibich, B. Ilan and M. I. Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.046602.  Google Scholar

[21]

G. I. Stegeman and M. Segev, Optical spatial solitons and their interactions: universality and diversity,, Science, 286 (1999), 1518.   Google Scholar

[22]

C. A. Stuart, Guidance properties of nonlinear planar waveguides,, Arch. Rational Mech. Anal., 125 (1993), 145.  doi: 10.1007/BF00376812.  Google Scholar

[23]

C. A. Stuart, An introduction to elliptic equations on $R^N$,, in, (1998), 237.   Google Scholar

[24]

C. A. Stuart, Uniqueness and stability of ground states for some nonlinear Schrödinger equations,, J. Eur. Math. Soc., 8 (2006), 399.  doi: 10.4171/JEMS/60.  Google Scholar

[25]

C. A. Stuart, Existence and stability of TE modes in a stratified non-linear dielectric,, IMA J. Appl. Math., 72 (2007), 659.  doi: 10.1093/imamat/hxm033.  Google Scholar

[26]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,, Milan J. Math., 76 (2008), 329.  doi: 10.1007/s00032-008-0089-9.  Google Scholar

[27]

C. A. Stuart and H.-S. Zhou, A variational problem related to self-trapping of an electromagnetic field,, Math. Methods Appl. Sci., 19 (1996), 1397.  doi: 10.1002/(SICI)1099-1476(19961125)19:17<1397::AID-MMA833>3.0.CO;2-B.  Google Scholar

[28]

C. A. Stuart and H.-S. Zhou, Applying the mountain pass theorem to an asymptotically linear elliptic equation on $R^N$,, Comm. Partial Differential Equations, 24 (1999), 1731.  doi: 10.1080/03605309908821481.  Google Scholar

[29]

C. A. Stuart and H.-S. Zhou, Axisymmetric TE-modes in a self-focusing dielectric,, SIAM J. Math. Anal., 37 (2005), 218.  doi: 10.1137/S0036141004441751.  Google Scholar

[30]

C. A. Stuart and H.-S. Zhou, Global branch of solutions for nonlinear Schrödinger equations with deepening potential well,, Proc. London Math. Soc., 92 (2006), 655.  doi: 10.1017/S0024611505015637.  Google Scholar

[31]

O. Svelto, Self-focusing, self-trapping, and self-phase modulation of laser beams,, in, 12 (1974), 1.   Google Scholar

[32]

J. F. Toland, Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line,, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259.  doi: 10.1017/S0308210500032042.  Google Scholar

[33]

N. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. Quantum Electron., 16 (1973), 783.   Google Scholar

[34]

H.-S. Zhou and H. Zhu, Asymptotically linear elliptic problem on $\mathbb R^N$,, Q. J. Math., 59 (2008), 523.  doi: 10.1093/qmath/ham047.  Google Scholar

show all references

References:
[1]

S. A. Akhmanov, R. V. Khokhlov and A. P. Sukhorukov, Self-Focusing, self-defocusing, and self-modulation of laser beams,, in, (1972), 1151.   Google Scholar

[2]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[3]

R. Y. Chiao, E. Garmire and C. H. Townes, Self-trapping of optical beams,, Phys. Rev. Lett., 13 (1964), 479.   Google Scholar

[4]

D. G. Costa and H. Tehrani, On a class of asymptotically linear elliptic problems in $\mathbb R^N$,, J. Differential Equations, 173 (2001), 470.  doi: 10.1006/jdeq.2000.3944.  Google Scholar

[5]

B. Crosignani, P. Di Porto, M. Segev, G. Salamo and A. Yariv, Nonlinear optical beam propagation and solitons in photorefractive media,, Riv. Nuovo Cimento, 21 (1998), 1.   Google Scholar

[6]

F. Genoud and C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves,, Discrete Contin. Dyn. Syst., 21 (2008), 137.  doi: 10.3934/dcds.2008.21.137.  Google Scholar

[7]

F. Genoud, Existence and orbital stability of standing waves for some nonlinear Schrödinger equations, perturbation of a model case,, J. Differential Equations, 246 (2009), 1921.  doi: 10.1016/j.jde.2008.10.029.  Google Scholar

[8]

F. Genoud, Bifurcation and stability of travelling waves in self- focusing planar waveguides,, Adv. Nonlinear Stud., 10 (2010), 357.   Google Scholar

[9]

F. Genoud, Bifurcation from infinity for an asymptotically linear problem on the half-line,, Nonlinear Anal., 74 (2011), 4533.  doi: 10.1016/j.na.2011.04.019.  Google Scholar

[10]

F. Genoud, Global bifurcation for asymptotically linear Schrödinger equations,, to appear in NoDEA Nonlinear Differential Equations Appl., ().  doi: 10.1007/s00030-012-0152-7.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", $2^{nd}$ Edition, (2001).   Google Scholar

[12]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[13]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787.  doi: 10.1017/S0308210500013147.  Google Scholar

[14]

L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbbR^N$ autonomous at infinity,, ESAIM Control Optim. Calc. Var., 7 (2002), 597.  doi: 10.1051/cocv:2002068.  Google Scholar

[15]

H. Jeanjean and C. A. Stuart, Nonlinear eigenvalue problems having an unbounded branch of symmetric bound states,, Adv. Differential Equations, 4 (1999), 639.   Google Scholar

[16]

J. B. McLeod, C. A. Stuart and W. C. Troy, Stability of standing waves for some nonlinear Schrödinger equations,, Differential Integral Equations, 16 (2003), 1025.   Google Scholar

[17]

P. J. Rabier and C. A. Stuart, Application of elliptic regularity to bifurcation in stationary nonlinear Schrödinger equations,, Nonlinear Anal., 52 (2003), 869.  doi: 10.1016/S0362-546X(02)00138-4.  Google Scholar

[18]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators,", Academic Press, (2003).   Google Scholar

[19]

B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics,", Wiley, (1991).   Google Scholar

[20]

Y. Sivan, G. Fibich, B. Ilan and M. I. Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.046602.  Google Scholar

[21]

G. I. Stegeman and M. Segev, Optical spatial solitons and their interactions: universality and diversity,, Science, 286 (1999), 1518.   Google Scholar

[22]

C. A. Stuart, Guidance properties of nonlinear planar waveguides,, Arch. Rational Mech. Anal., 125 (1993), 145.  doi: 10.1007/BF00376812.  Google Scholar

[23]

C. A. Stuart, An introduction to elliptic equations on $R^N$,, in, (1998), 237.   Google Scholar

[24]

C. A. Stuart, Uniqueness and stability of ground states for some nonlinear Schrödinger equations,, J. Eur. Math. Soc., 8 (2006), 399.  doi: 10.4171/JEMS/60.  Google Scholar

[25]

C. A. Stuart, Existence and stability of TE modes in a stratified non-linear dielectric,, IMA J. Appl. Math., 72 (2007), 659.  doi: 10.1093/imamat/hxm033.  Google Scholar

[26]

C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation,, Milan J. Math., 76 (2008), 329.  doi: 10.1007/s00032-008-0089-9.  Google Scholar

[27]

C. A. Stuart and H.-S. Zhou, A variational problem related to self-trapping of an electromagnetic field,, Math. Methods Appl. Sci., 19 (1996), 1397.  doi: 10.1002/(SICI)1099-1476(19961125)19:17<1397::AID-MMA833>3.0.CO;2-B.  Google Scholar

[28]

C. A. Stuart and H.-S. Zhou, Applying the mountain pass theorem to an asymptotically linear elliptic equation on $R^N$,, Comm. Partial Differential Equations, 24 (1999), 1731.  doi: 10.1080/03605309908821481.  Google Scholar

[29]

C. A. Stuart and H.-S. Zhou, Axisymmetric TE-modes in a self-focusing dielectric,, SIAM J. Math. Anal., 37 (2005), 218.  doi: 10.1137/S0036141004441751.  Google Scholar

[30]

C. A. Stuart and H.-S. Zhou, Global branch of solutions for nonlinear Schrödinger equations with deepening potential well,, Proc. London Math. Soc., 92 (2006), 655.  doi: 10.1017/S0024611505015637.  Google Scholar

[31]

O. Svelto, Self-focusing, self-trapping, and self-phase modulation of laser beams,, in, 12 (1974), 1.   Google Scholar

[32]

J. F. Toland, Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line,, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 259.  doi: 10.1017/S0308210500032042.  Google Scholar

[33]

N. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. Quantum Electron., 16 (1973), 783.   Google Scholar

[34]

H.-S. Zhou and H. Zhu, Asymptotically linear elliptic problem on $\mathbb R^N$,, Q. J. Math., 59 (2008), 523.  doi: 10.1093/qmath/ham047.  Google Scholar

[1]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[2]

Kai Yang. The focusing NLS on exterior domains in three dimensions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2269-2297. doi: 10.3934/cpaa.2017112

[3]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[4]

Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105

[5]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[6]

Jaime Angulo Pava, Nataliia Goloshchapova. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5039-5066. doi: 10.3934/dcds.2018221

[7]

Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems & Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713

[8]

Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289

[9]

Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617

[10]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[11]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[12]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[13]

D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 31-54. doi: 10.3934/dcds.2003.9.31

[15]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[16]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[17]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[18]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[19]

Jinlong Bai, Xuewei Ju, Desheng Li, Xiulian Wang. On the eventual stability of asymptotically autonomous systems with constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4457-4473. doi: 10.3934/dcdsb.2019127

[20]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]