March  2014, 3(1): 135-146. doi: 10.3934/eect.2014.3.135

Cross-like internal observability of rectangular membranes

1. 

Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

2. 

Université Paris-Est, Cité Descartes-Champs-sur-Marne, 5, boulevard Descartes, 77454 Marne la Vallée, France

Received  October 2013 Revised  December 2013 Published  February 2014

We present a new way to establish internal observability results for the wave equation. Our method is based on some variants of Ingham's theorem on nonharmonic Fourier series, due to Loreti, Valente and Mehrenberger.
Citation: Vilmos Komornik, Bernadette Miara. Cross-like internal observability of rectangular membranes. Evolution Equations & Control Theory, 2014, 3 (1) : 135-146. doi: 10.3934/eect.2014.3.135
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[2]

A. Haraux, Contrôlabilité exacte d'une membrane rectangulaire au moyen d'une fonctionnelle analytique localisée,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 125. Google Scholar

[3]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457. Google Scholar

[4]

A. Haraux, On a completion problem in the theory of distributed control of wave equations,, Nonlinear partial differential equations and their applications. Collège de France Seminar, 220 (1991), 1987. Google Scholar

[5]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367. doi: 10.1007/BF01180426. Google Scholar

[6]

V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005). Google Scholar

[7]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[8]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Masson, (1988). Google Scholar

[9]

P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem,, ESAIM Control Optim. Calc. Var., 14 (2008), 604. doi: 10.1051/cocv:2007062. Google Scholar

[10]

P. Loreti and V. Valente, Partial exact controllability for spherical membranes,, SIAM J. Control Optim., 35 (1997), 641. doi: 10.1137/S036301299526962X. Google Scholar

[11]

M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation,, C. R. Math. Acad. Sci. Paris, 347 (2009), 63. doi: 10.1016/j.crma.2008.11.002. Google Scholar

[12]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. doi: 10.1007/s00041-013-9267-4. Google Scholar

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[2]

A. Haraux, Contrôlabilité exacte d'une membrane rectangulaire au moyen d'une fonctionnelle analytique localisée,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 125. Google Scholar

[3]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457. Google Scholar

[4]

A. Haraux, On a completion problem in the theory of distributed control of wave equations,, Nonlinear partial differential equations and their applications. Collège de France Seminar, 220 (1991), 1987. Google Scholar

[5]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367. doi: 10.1007/BF01180426. Google Scholar

[6]

V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005). Google Scholar

[7]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[8]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Masson, (1988). Google Scholar

[9]

P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem,, ESAIM Control Optim. Calc. Var., 14 (2008), 604. doi: 10.1051/cocv:2007062. Google Scholar

[10]

P. Loreti and V. Valente, Partial exact controllability for spherical membranes,, SIAM J. Control Optim., 35 (1997), 641. doi: 10.1137/S036301299526962X. Google Scholar

[11]

M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation,, C. R. Math. Acad. Sci. Paris, 347 (2009), 63. doi: 10.1016/j.crma.2008.11.002. Google Scholar

[12]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. doi: 10.1007/s00041-013-9267-4. Google Scholar

[1]

Vilmos Komornik, Gérald Tenenbaum. An Ingham--Müntz type theorem and simultaneous observation problems. Evolution Equations & Control Theory, 2015, 4 (3) : 297-314. doi: 10.3934/eect.2015.4.297

[2]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[3]

Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119

[4]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[5]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[6]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[7]

Albert Fathi. An Urysohn-type theorem under a dynamical constraint. Journal of Modern Dynamics, 2016, 10: 331-338. doi: 10.3934/jmd.2016.10.331

[8]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[9]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[10]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[11]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[12]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[13]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[14]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[15]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[16]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

[17]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[18]

Yongxin Jiang, Can Zhang, Zhaosheng Feng. A Perron-type theorem for nonautonomous differential equations with different growth rates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 995-1008. doi: 10.3934/dcdss.2017052

[19]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[20]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]