March  2014, 3(1): 135-146. doi: 10.3934/eect.2014.3.135

Cross-like internal observability of rectangular membranes

1. 

Département de mathématique, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

2. 

Université Paris-Est, Cité Descartes-Champs-sur-Marne, 5, boulevard Descartes, 77454 Marne la Vallée, France

Received  October 2013 Revised  December 2013 Published  February 2014

We present a new way to establish internal observability results for the wave equation. Our method is based on some variants of Ingham's theorem on nonharmonic Fourier series, due to Loreti, Valente and Mehrenberger.
Citation: Vilmos Komornik, Bernadette Miara. Cross-like internal observability of rectangular membranes. Evolution Equations & Control Theory, 2014, 3 (1) : 135-146. doi: 10.3934/eect.2014.3.135
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[2]

A. Haraux, Contrôlabilité exacte d'une membrane rectangulaire au moyen d'une fonctionnelle analytique localisée,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 125.   Google Scholar

[3]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457.   Google Scholar

[4]

A. Haraux, On a completion problem in the theory of distributed control of wave equations,, Nonlinear partial differential equations and their applications. Collège de France Seminar, 220 (1991), 1987.   Google Scholar

[5]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar

[6]

V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005).   Google Scholar

[7]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[8]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Masson, (1988).   Google Scholar

[9]

P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem,, ESAIM Control Optim. Calc. Var., 14 (2008), 604.  doi: 10.1051/cocv:2007062.  Google Scholar

[10]

P. Loreti and V. Valente, Partial exact controllability for spherical membranes,, SIAM J. Control Optim., 35 (1997), 641.  doi: 10.1137/S036301299526962X.  Google Scholar

[11]

M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation,, C. R. Math. Acad. Sci. Paris, 347 (2009), 63.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar

[12]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.  doi: 10.1007/s00041-013-9267-4.  Google Scholar

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[2]

A. Haraux, Contrôlabilité exacte d'une membrane rectangulaire au moyen d'une fonctionnelle analytique localisée,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 125.   Google Scholar

[3]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,, J. Math. Pures Appl., 68 (1989), 457.   Google Scholar

[4]

A. Haraux, On a completion problem in the theory of distributed control of wave equations,, Nonlinear partial differential equations and their applications. Collège de France Seminar, 220 (1991), 1987.   Google Scholar

[5]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series,, Math. Z., 41 (1936), 367.  doi: 10.1007/BF01180426.  Google Scholar

[6]

V. Komornik and P. Loreti, Fourier Series in Control Theory,, Springer-Verlag, (2005).   Google Scholar

[7]

J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[8]

J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Contrôlabilité exacte,, Masson, (1988).   Google Scholar

[9]

P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem,, ESAIM Control Optim. Calc. Var., 14 (2008), 604.  doi: 10.1051/cocv:2007062.  Google Scholar

[10]

P. Loreti and V. Valente, Partial exact controllability for spherical membranes,, SIAM J. Control Optim., 35 (1997), 641.  doi: 10.1137/S036301299526962X.  Google Scholar

[11]

M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation,, C. R. Math. Acad. Sci. Paris, 347 (2009), 63.  doi: 10.1016/j.crma.2008.11.002.  Google Scholar

[12]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.  doi: 10.1007/s00041-013-9267-4.  Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]