March  2014, 3(1): 15-33. doi: 10.3934/eect.2014.3.15

Well-posedness for degenerate Schrödinger equations

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, 40126 Bologna, Italy

2. 

TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, Institut für Angewandte Analysis, 09596 Freiberg, Germany

Received  March 2013 Revised  August 2013 Published  February 2014

We consider the initial value problem for Schrödinger type equations $$\frac{1}{i}\partial_tu-a(t)\Delta_xu+\sum_{j=1}^nb_j(t,x)\partial_{x_j}u=0$$ with $a(t)$ vanishing of finite order at $t=0$ proving the well-posedness in Sobolev and Gevrey spaces according to the behavior of the real parts $\Re b_j(t,x)$ as $t\to0$ and $|x|\to\infty$. Moreover, we discuss the application of our approach to the case of a general degeneracy.
Citation: Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15
References:
[1]

A. Ascanelli, M. Cicognani and F. Colombini, The global Cauchy problem for a vibrating beam equation,, Journal of Differential Equations, 247 (2009), 1440.  doi: 10.1016/j.jde.2009.06.012.  Google Scholar

[2]

A. Ascanelli and M. Cicognani, Gevrey solutions for a vibrating beam equation,, Rend. Semin. Mat. Torino, 67 (2009), 151.   Google Scholar

[3]

M. Cicognani and F. Colombini, Optimal well-posedness of the cauchy problem for evolution equations with $C^N$ coefficients,, Differential and Integral Equations, 17 (2004), 1079.   Google Scholar

[4]

M. Cicognani and T. Herrmanni, $H^\infty$ well-posedness for a $2$-evolution Cauchy problem with complex coefficients,, Journal of Pseudo-Differential Operators and Applications, 4 (2013), 63.  doi: 10.1007/s11868-013-0062-4.  Google Scholar

[5]

S. I. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions,, J. Math. Kyoto Univ., 34 (1994), 319.   Google Scholar

[6]

S. I. Doi, Remarks on the Cauchy problem for Schrödingerr-type equations,, Comm. Partial Differential Equations, 21 (1996), 163.  doi: 10.1080/03605309608821178.  Google Scholar

[7]

M. Dreher, Necessary conditions for the well-posedness of Schrödinger type equations in Gevrey spaces,, Bull. Sci. Math., 127 (2003), 485.  doi: 10.1016/S0007-4497(03)00026-5.  Google Scholar

[8]

W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations,, Osaka J. Math., 21 (1984), 565.   Google Scholar

[9]

W. Ichinose, Sufficient condition on $H^\infty$ well-posedness for Schrödinger type equations,, Comm. Partial Differential Equations, 9 (1984), 33.  doi: 10.1080/03605308408820324.  Google Scholar

[10]

W. Ichinose, On a necessary condition for $L^2$ well-posedness of the Cauchy problem for some Schrödinger type equations with a potential term,, J. Math. Kyoto Univ., 33 (1993), 647.   Google Scholar

[11]

W. Ichinose, On the Cauchy problem for Schrödinger type equations and Fourier integral operators,, J. Math. Kyoto Univ., 33 (1993), 583.   Google Scholar

[12]

K. Kajitani, The Cauchy problem for Schrödinger type equations with variable coefficients,, J. Math. Soc. Japan, 50 (1998), 179.  doi: 10.2969/jmsj/05010179.  Google Scholar

[13]

K. Kajitani and A. Baba, The Cauchy problem for Schrödinger type equations,, Bull. Sci. Math., 119 (1995), 459.   Google Scholar

[14]

K. Kajitani and T. Nishitani, The Hyperbolic Cauchy Problem,, Lecture Notes in Mathematics, (1991).   Google Scholar

[15]

S. Mizohata, On some Schrödinger type equations,, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 81.  doi: 10.3792/pjaa.57.81.  Google Scholar

show all references

References:
[1]

A. Ascanelli, M. Cicognani and F. Colombini, The global Cauchy problem for a vibrating beam equation,, Journal of Differential Equations, 247 (2009), 1440.  doi: 10.1016/j.jde.2009.06.012.  Google Scholar

[2]

A. Ascanelli and M. Cicognani, Gevrey solutions for a vibrating beam equation,, Rend. Semin. Mat. Torino, 67 (2009), 151.   Google Scholar

[3]

M. Cicognani and F. Colombini, Optimal well-posedness of the cauchy problem for evolution equations with $C^N$ coefficients,, Differential and Integral Equations, 17 (2004), 1079.   Google Scholar

[4]

M. Cicognani and T. Herrmanni, $H^\infty$ well-posedness for a $2$-evolution Cauchy problem with complex coefficients,, Journal of Pseudo-Differential Operators and Applications, 4 (2013), 63.  doi: 10.1007/s11868-013-0062-4.  Google Scholar

[5]

S. I. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions,, J. Math. Kyoto Univ., 34 (1994), 319.   Google Scholar

[6]

S. I. Doi, Remarks on the Cauchy problem for Schrödingerr-type equations,, Comm. Partial Differential Equations, 21 (1996), 163.  doi: 10.1080/03605309608821178.  Google Scholar

[7]

M. Dreher, Necessary conditions for the well-posedness of Schrödinger type equations in Gevrey spaces,, Bull. Sci. Math., 127 (2003), 485.  doi: 10.1016/S0007-4497(03)00026-5.  Google Scholar

[8]

W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations,, Osaka J. Math., 21 (1984), 565.   Google Scholar

[9]

W. Ichinose, Sufficient condition on $H^\infty$ well-posedness for Schrödinger type equations,, Comm. Partial Differential Equations, 9 (1984), 33.  doi: 10.1080/03605308408820324.  Google Scholar

[10]

W. Ichinose, On a necessary condition for $L^2$ well-posedness of the Cauchy problem for some Schrödinger type equations with a potential term,, J. Math. Kyoto Univ., 33 (1993), 647.   Google Scholar

[11]

W. Ichinose, On the Cauchy problem for Schrödinger type equations and Fourier integral operators,, J. Math. Kyoto Univ., 33 (1993), 583.   Google Scholar

[12]

K. Kajitani, The Cauchy problem for Schrödinger type equations with variable coefficients,, J. Math. Soc. Japan, 50 (1998), 179.  doi: 10.2969/jmsj/05010179.  Google Scholar

[13]

K. Kajitani and A. Baba, The Cauchy problem for Schrödinger type equations,, Bull. Sci. Math., 119 (1995), 459.   Google Scholar

[14]

K. Kajitani and T. Nishitani, The Hyperbolic Cauchy Problem,, Lecture Notes in Mathematics, (1991).   Google Scholar

[15]

S. Mizohata, On some Schrödinger type equations,, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 81.  doi: 10.3792/pjaa.57.81.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]