March  2014, 3(1): 15-33. doi: 10.3934/eect.2014.3.15

Well-posedness for degenerate Schrödinger equations

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, 40126 Bologna, Italy

2. 

TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, Institut für Angewandte Analysis, 09596 Freiberg, Germany

Received  March 2013 Revised  August 2013 Published  February 2014

We consider the initial value problem for Schrödinger type equations $$\frac{1}{i}\partial_tu-a(t)\Delta_xu+\sum_{j=1}^nb_j(t,x)\partial_{x_j}u=0$$ with $a(t)$ vanishing of finite order at $t=0$ proving the well-posedness in Sobolev and Gevrey spaces according to the behavior of the real parts $\Re b_j(t,x)$ as $t\to0$ and $|x|\to\infty$. Moreover, we discuss the application of our approach to the case of a general degeneracy.
Citation: Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15
References:
[1]

A. Ascanelli, M. Cicognani and F. Colombini, The global Cauchy problem for a vibrating beam equation, Journal of Differential Equations, 247 (2009), 1440-1451. doi: 10.1016/j.jde.2009.06.012.

[2]

A. Ascanelli and M. Cicognani, Gevrey solutions for a vibrating beam equation, Rend. Semin. Mat. Torino, 67 (2009), 151-164.

[3]

M. Cicognani and F. Colombini, Optimal well-posedness of the cauchy problem for evolution equations with $C^N$ coefficients, Differential and Integral Equations, 17 (2004), 1079-1092.

[4]

M. Cicognani and T. Herrmanni, $H^\infty$ well-posedness for a $2$-evolution Cauchy problem with complex coefficients, Journal of Pseudo-Differential Operators and Applications, 4 (2013), 63-90. doi: 10.1007/s11868-013-0062-4.

[5]

S. I. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34 (1994), 319-328.

[6]

S. I. Doi, Remarks on the Cauchy problem for Schrödingerr-type equations, Comm. Partial Differential Equations, 21 (1996), 163-178. doi: 10.1080/03605309608821178.

[7]

M. Dreher, Necessary conditions for the well-posedness of Schrödinger type equations in Gevrey spaces, Bull. Sci. Math., 127 (2003), 485-503. doi: 10.1016/S0007-4497(03)00026-5.

[8]

W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21 (1984), 565-581.

[9]

W. Ichinose, Sufficient condition on $H^\infty$ well-posedness for Schrödinger type equations, Comm. Partial Differential Equations, 9 (1984), 33-48. doi: 10.1080/03605308408820324.

[10]

W. Ichinose, On a necessary condition for $L^2$ well-posedness of the Cauchy problem for some Schrödinger type equations with a potential term, J. Math. Kyoto Univ., 33 (1993), 647-663.

[11]

W. Ichinose, On the Cauchy problem for Schrödinger type equations and Fourier integral operators, J. Math. Kyoto Univ., 33 (1993), 583-620.

[12]

K. Kajitani, The Cauchy problem for Schrödinger type equations with variable coefficients, J. Math. Soc. Japan, 50 (1998), 179-202. doi: 10.2969/jmsj/05010179.

[13]

K. Kajitani and A. Baba, The Cauchy problem for Schrödinger type equations, Bull. Sci. Math., 119 (1995), 459-473.

[14]

K. Kajitani and T. Nishitani, The Hyperbolic Cauchy Problem, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.

[15]

S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 81-84. doi: 10.3792/pjaa.57.81.

show all references

References:
[1]

A. Ascanelli, M. Cicognani and F. Colombini, The global Cauchy problem for a vibrating beam equation, Journal of Differential Equations, 247 (2009), 1440-1451. doi: 10.1016/j.jde.2009.06.012.

[2]

A. Ascanelli and M. Cicognani, Gevrey solutions for a vibrating beam equation, Rend. Semin. Mat. Torino, 67 (2009), 151-164.

[3]

M. Cicognani and F. Colombini, Optimal well-posedness of the cauchy problem for evolution equations with $C^N$ coefficients, Differential and Integral Equations, 17 (2004), 1079-1092.

[4]

M. Cicognani and T. Herrmanni, $H^\infty$ well-posedness for a $2$-evolution Cauchy problem with complex coefficients, Journal of Pseudo-Differential Operators and Applications, 4 (2013), 63-90. doi: 10.1007/s11868-013-0062-4.

[5]

S. I. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34 (1994), 319-328.

[6]

S. I. Doi, Remarks on the Cauchy problem for Schrödingerr-type equations, Comm. Partial Differential Equations, 21 (1996), 163-178. doi: 10.1080/03605309608821178.

[7]

M. Dreher, Necessary conditions for the well-posedness of Schrödinger type equations in Gevrey spaces, Bull. Sci. Math., 127 (2003), 485-503. doi: 10.1016/S0007-4497(03)00026-5.

[8]

W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21 (1984), 565-581.

[9]

W. Ichinose, Sufficient condition on $H^\infty$ well-posedness for Schrödinger type equations, Comm. Partial Differential Equations, 9 (1984), 33-48. doi: 10.1080/03605308408820324.

[10]

W. Ichinose, On a necessary condition for $L^2$ well-posedness of the Cauchy problem for some Schrödinger type equations with a potential term, J. Math. Kyoto Univ., 33 (1993), 647-663.

[11]

W. Ichinose, On the Cauchy problem for Schrödinger type equations and Fourier integral operators, J. Math. Kyoto Univ., 33 (1993), 583-620.

[12]

K. Kajitani, The Cauchy problem for Schrödinger type equations with variable coefficients, J. Math. Soc. Japan, 50 (1998), 179-202. doi: 10.2969/jmsj/05010179.

[13]

K. Kajitani and A. Baba, The Cauchy problem for Schrödinger type equations, Bull. Sci. Math., 119 (1995), 459-473.

[14]

K. Kajitani and T. Nishitani, The Hyperbolic Cauchy Problem, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.

[15]

S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 81-84. doi: 10.3792/pjaa.57.81.

[1]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[2]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[3]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[4]

Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž. Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8 (4) : 843-855. doi: 10.3934/nhm.2013.8.843

[5]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[6]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[7]

Shubin Wang, Guowang Chen. Cauchy problem for the nonlinear Schrödinger-IMBq equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 203-214. doi: 10.3934/dcdsb.2006.6.203

[8]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[9]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[10]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[11]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[12]

Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022039

[13]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156

[14]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[15]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[16]

Sebastian Engel, Karl Kunisch. Optimal control of the linear wave equation by time-depending BV-controls: A semi-smooth Newton approach. Mathematical Control and Related Fields, 2020, 10 (3) : 591-622. doi: 10.3934/mcrf.2020012

[17]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[18]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[19]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[20]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (326)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]