\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains

Abstract Related Papers Cited by
  • This paper is concerned with the system of nonlinear heat equations with constraints coupled with Navier-Stokes equations in two-dimensional domains. In 2012, Sobajima, Tsuzuki and Yokota proved the existence and uniqueness of solutions to the system with heat equations including the diffusion term $\Delta\theta$, where $\theta$ represents the temperature. This paper gives the existence result in which the Laplace operator $\Delta$ is replaced with the $p$-Laplace operator $\Delta\rho$, where $p>2$.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 47H05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010.doi: 10.1007/978-1-4419-5542-5.

    [2]

    J. L. Boldrini and S. A. Lorca, The initial value problem for a generalized Boussinesq model, Nonlinear Anal., 36 (1999), 457-480.doi: 10.1016/S0362-546X(97)00635-4.

    [3]

    J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, Topol. Methods Nonlinear Anal., 11 (1998), 59-82.

    [4]

    T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-Stokes equations, Adv. Math. Sci. Appl., 15 (2005), 29-48.

    [5]

    T. Fukao and M. Kubo, Nonlinear degenerate parabolic equations for a thermohydraulic model, in Discrete Contin. Dyn. Syst., Am. Inst. Math. Sci., (2007), 399-408.

    [6]

    T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics, in Nonlinear phenomena with energy dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 29 (2008), 73-92.

    [7]

    M. Kubo, Weak solutions of a thermohydraulics model with a general nonlinear heat flux, in Mathematical approach to nonlinear phenomena: Modelling, analysis and simulations, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 23 (2005), 163-178.

    [8]

    H. Morimoto, Nonstationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 61-75.

    [9]

    N. Okazawa, An application of the perturbation theorem for $m$-accretive operators, II, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 1-42.doi: 10.3792/pjaa.60.10.

    [10]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360.

    [11]

    M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains, Adv. Math. Sci. Appl., 22 (2012), 577-596.

    [12]

    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Amsterdam-New York, North-Holland, 1977.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return