March  2014, 3(1): 191-206. doi: 10.3934/eect.2014.3.191

Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received  April 2013 Revised  August 2013 Published  February 2014

This paper is concerned with the system of nonlinear heat equations with constraints coupled with Navier-Stokes equations in two-dimensional domains. In 2012, Sobajima, Tsuzuki and Yokota proved the existence and uniqueness of solutions to the system with heat equations including the diffusion term $\Delta\theta$, where $\theta$ represents the temperature. This paper gives the existence result in which the Laplace operator $\Delta$ is replaced with the $p$-Laplace operator $\Delta\rho$, where $p>2$.
Citation: Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191
References:
[1]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[2]

J. L. Boldrini and S. A. Lorca, The initial value problem for a generalized Boussinesq model, Nonlinear Anal., 36 (1999), 457-480. doi: 10.1016/S0362-546X(97)00635-4.  Google Scholar

[3]

J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, Topol. Methods Nonlinear Anal., 11 (1998), 59-82.  Google Scholar

[4]

T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-Stokes equations, Adv. Math. Sci. Appl., 15 (2005), 29-48.  Google Scholar

[5]

T. Fukao and M. Kubo, Nonlinear degenerate parabolic equations for a thermohydraulic model, in Discrete Contin. Dyn. Syst., Am. Inst. Math. Sci., (2007), 399-408.  Google Scholar

[6]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics, in Nonlinear phenomena with energy dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 29 (2008), 73-92.  Google Scholar

[7]

M. Kubo, Weak solutions of a thermohydraulics model with a general nonlinear heat flux, in Mathematical approach to nonlinear phenomena: Modelling, analysis and simulations, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 23 (2005), 163-178.  Google Scholar

[8]

H. Morimoto, Nonstationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 61-75.  Google Scholar

[9]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators, II, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 1-42. doi: 10.3792/pjaa.60.10.  Google Scholar

[10]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[11]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains, Adv. Math. Sci. Appl., 22 (2012), 577-596.  Google Scholar

[12]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Amsterdam-New York, North-Holland, 1977.  Google Scholar

show all references

References:
[1]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[2]

J. L. Boldrini and S. A. Lorca, The initial value problem for a generalized Boussinesq model, Nonlinear Anal., 36 (1999), 457-480. doi: 10.1016/S0362-546X(97)00635-4.  Google Scholar

[3]

J. I. Díaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, Topol. Methods Nonlinear Anal., 11 (1998), 59-82.  Google Scholar

[4]

T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-Stokes equations, Adv. Math. Sci. Appl., 15 (2005), 29-48.  Google Scholar

[5]

T. Fukao and M. Kubo, Nonlinear degenerate parabolic equations for a thermohydraulic model, in Discrete Contin. Dyn. Syst., Am. Inst. Math. Sci., (2007), 399-408.  Google Scholar

[6]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics, in Nonlinear phenomena with energy dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 29 (2008), 73-92.  Google Scholar

[7]

M. Kubo, Weak solutions of a thermohydraulics model with a general nonlinear heat flux, in Mathematical approach to nonlinear phenomena: Modelling, analysis and simulations, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 23 (2005), 163-178.  Google Scholar

[8]

H. Morimoto, Nonstationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 61-75.  Google Scholar

[9]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators, II, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 1-42. doi: 10.3792/pjaa.60.10.  Google Scholar

[10]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[11]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains, Adv. Math. Sci. Appl., 22 (2012), 577-596.  Google Scholar

[12]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Amsterdam-New York, North-Holland, 1977.  Google Scholar

[1]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[2]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[3]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[4]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[5]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[6]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[7]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[8]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[9]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[10]

Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113

[11]

Adam Larios, Yuan Pei. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. Evolution Equations & Control Theory, 2020, 9 (3) : 733-751. doi: 10.3934/eect.2020031

[12]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[13]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[14]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[15]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[16]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[17]

Julia García-Luengo, Pedro Marín-Rubio. Pullback attractors for 2D Navier–Stokes equations with delays and the flattening property. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2127-2146. doi: 10.3934/cpaa.2020094

[18]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[19]

Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065

[20]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]