June  2014, 3(2): 207-229. doi: 10.3934/eect.2014.3.207

Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems

1. 

Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Germany

Received  December 2013 Revised  April 2014 Published  May 2014

Stability and stabilization of linear port-Hamiltonian systems on infinite-dimensional spaces are investigated. This class is general enough to include models of beams and waves as well as transport and Schrödinger equations with boundary control and observation. The analysis is based on the frequency domain method which gives new results for second order port-Hamiltonian systems and hybrid systems. Stabilizing SIP or SOP controllers are designed. The obtained results are applied to the Euler-Bernoulli beam.
Citation: Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207
References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Soc. Math., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, (1184).   Google Scholar

[3]

G. Chen, M. C. Delfour, A. M. Krall and G. Payres, Modeling, stabilization and control of serially connected beams,, SIAM J. Control Optim., 25 (1987), 526.  doi: 10.1137/0325029.  Google Scholar

[4]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The euler-bernoulli beam equation with boundary energy dissipation,, in Operator Methods for Optimal Control Problems (ed. S. J. Lee), 108 (1987), 67.   Google Scholar

[5]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545.  doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[6]

T. Eisner, Stability of Operators and Operator Semigroups,, Operator Theory: Advances and Applications, (2010).   Google Scholar

[7]

K.-J. Engel, Generator property and stability for generalized difference operators,, J. Evol. Equ., 13 (2013), 311.  doi: 10.1007/s00028-013-0179-1.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).  doi: 10.1007/b97696.  Google Scholar

[9]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,, Trans. Amer. Math. Soc., 236 (1978), 385.  doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[10]

F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free,, SIAM J. Control Optim., 43 (2004), 341.  doi: 10.1137/S0363012901380961.  Google Scholar

[11]

B.-Z. Guo, J.-M. Wang and S.-P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam,, Systems Control Lett., 54 (2005), 557.  doi: 10.1016/j.sysconle.2004.10.006.  Google Scholar

[12]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012).  doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[13]

Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. Control Optim., 44 (2005), 1864.  doi: 10.1137/040611677.  Google Scholar

[14]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Math. Pura Appl., 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[15]

K. Liu and Z. Liu, Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip,, J. Comp. Appl. Math., 114 (2000), 1.  doi: 10.1016/S0377-0427(99)00284-8.  Google Scholar

[16]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.   Google Scholar

[17]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[18]

H. Ramirez, H. Zwart and Y. Le Gorrec, Exponential Stability of Boundary Controlled Port Hamiltonian Systems with Dynamic Feedback,, IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., (2014).  doi: 10.1109/TAC.2014.2315754.  Google Scholar

[19]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[20]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. Geom. Phys., 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[21]

J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators,, Operator Theory: Advances and Applications, (1996).  doi: 10.1007/978-3-0348-9206-3.  Google Scholar

[22]

J. A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems,, PhD thesis, (2007).   Google Scholar

[23]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems,, IEEE Trans. Automat. Control, 54 (2009), 142.  doi: 10.1109/TAC.2008.2007176.  Google Scholar

[24]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077.  doi: 10.1051/cocv/2009036.  Google Scholar

show all references

References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Soc. Math., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, (1184).   Google Scholar

[3]

G. Chen, M. C. Delfour, A. M. Krall and G. Payres, Modeling, stabilization and control of serially connected beams,, SIAM J. Control Optim., 25 (1987), 526.  doi: 10.1137/0325029.  Google Scholar

[4]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The euler-bernoulli beam equation with boundary energy dissipation,, in Operator Methods for Optimal Control Problems (ed. S. J. Lee), 108 (1987), 67.   Google Scholar

[5]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545.  doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[6]

T. Eisner, Stability of Operators and Operator Semigroups,, Operator Theory: Advances and Applications, (2010).   Google Scholar

[7]

K.-J. Engel, Generator property and stability for generalized difference operators,, J. Evol. Equ., 13 (2013), 311.  doi: 10.1007/s00028-013-0179-1.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).  doi: 10.1007/b97696.  Google Scholar

[9]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,, Trans. Amer. Math. Soc., 236 (1978), 385.  doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[10]

F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free,, SIAM J. Control Optim., 43 (2004), 341.  doi: 10.1137/S0363012901380961.  Google Scholar

[11]

B.-Z. Guo, J.-M. Wang and S.-P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam,, Systems Control Lett., 54 (2005), 557.  doi: 10.1016/j.sysconle.2004.10.006.  Google Scholar

[12]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012).  doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[13]

Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. Control Optim., 44 (2005), 1864.  doi: 10.1137/040611677.  Google Scholar

[14]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Math. Pura Appl., 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[15]

K. Liu and Z. Liu, Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip,, J. Comp. Appl. Math., 114 (2000), 1.  doi: 10.1016/S0377-0427(99)00284-8.  Google Scholar

[16]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.   Google Scholar

[17]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[18]

H. Ramirez, H. Zwart and Y. Le Gorrec, Exponential Stability of Boundary Controlled Port Hamiltonian Systems with Dynamic Feedback,, IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., (2014).  doi: 10.1109/TAC.2014.2315754.  Google Scholar

[19]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[20]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. Geom. Phys., 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[21]

J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators,, Operator Theory: Advances and Applications, (1996).  doi: 10.1007/978-3-0348-9206-3.  Google Scholar

[22]

J. A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems,, PhD thesis, (2007).   Google Scholar

[23]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems,, IEEE Trans. Automat. Control, 54 (2009), 142.  doi: 10.1109/TAC.2008.2007176.  Google Scholar

[24]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077.  doi: 10.1051/cocv/2009036.  Google Scholar

[1]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[6]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[7]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[8]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[9]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[13]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[14]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[15]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[16]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]