June  2014, 3(2): 207-229. doi: 10.3934/eect.2014.3.207

Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems

1. 

Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Germany

Received  December 2013 Revised  April 2014 Published  May 2014

Stability and stabilization of linear port-Hamiltonian systems on infinite-dimensional spaces are investigated. This class is general enough to include models of beams and waves as well as transport and Schrödinger equations with boundary control and observation. The analysis is based on the frequency domain method which gives new results for second order port-Hamiltonian systems and hybrid systems. Stabilizing SIP or SOP controllers are designed. The obtained results are applied to the Euler-Bernoulli beam.
Citation: Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207
References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Soc. Math., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, (1184).   Google Scholar

[3]

G. Chen, M. C. Delfour, A. M. Krall and G. Payres, Modeling, stabilization and control of serially connected beams,, SIAM J. Control Optim., 25 (1987), 526.  doi: 10.1137/0325029.  Google Scholar

[4]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The euler-bernoulli beam equation with boundary energy dissipation,, in Operator Methods for Optimal Control Problems (ed. S. J. Lee), 108 (1987), 67.   Google Scholar

[5]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545.  doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[6]

T. Eisner, Stability of Operators and Operator Semigroups,, Operator Theory: Advances and Applications, (2010).   Google Scholar

[7]

K.-J. Engel, Generator property and stability for generalized difference operators,, J. Evol. Equ., 13 (2013), 311.  doi: 10.1007/s00028-013-0179-1.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).  doi: 10.1007/b97696.  Google Scholar

[9]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,, Trans. Amer. Math. Soc., 236 (1978), 385.  doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[10]

F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free,, SIAM J. Control Optim., 43 (2004), 341.  doi: 10.1137/S0363012901380961.  Google Scholar

[11]

B.-Z. Guo, J.-M. Wang and S.-P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam,, Systems Control Lett., 54 (2005), 557.  doi: 10.1016/j.sysconle.2004.10.006.  Google Scholar

[12]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012).  doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[13]

Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. Control Optim., 44 (2005), 1864.  doi: 10.1137/040611677.  Google Scholar

[14]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Math. Pura Appl., 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[15]

K. Liu and Z. Liu, Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip,, J. Comp. Appl. Math., 114 (2000), 1.  doi: 10.1016/S0377-0427(99)00284-8.  Google Scholar

[16]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.   Google Scholar

[17]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[18]

H. Ramirez, H. Zwart and Y. Le Gorrec, Exponential Stability of Boundary Controlled Port Hamiltonian Systems with Dynamic Feedback,, IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., (2014).  doi: 10.1109/TAC.2014.2315754.  Google Scholar

[19]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[20]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. Geom. Phys., 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[21]

J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators,, Operator Theory: Advances and Applications, (1996).  doi: 10.1007/978-3-0348-9206-3.  Google Scholar

[22]

J. A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems,, PhD thesis, (2007).   Google Scholar

[23]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems,, IEEE Trans. Automat. Control, 54 (2009), 142.  doi: 10.1109/TAC.2008.2007176.  Google Scholar

[24]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077.  doi: 10.1051/cocv/2009036.  Google Scholar

show all references

References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Soc. Math., 306 (1988), 837.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[2]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, (1184).   Google Scholar

[3]

G. Chen, M. C. Delfour, A. M. Krall and G. Payres, Modeling, stabilization and control of serially connected beams,, SIAM J. Control Optim., 25 (1987), 526.  doi: 10.1137/0325029.  Google Scholar

[4]

G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West, The euler-bernoulli beam equation with boundary energy dissipation,, in Operator Methods for Optimal Control Problems (ed. S. J. Lee), 108 (1987), 67.   Google Scholar

[5]

S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end,, Indiana Univ. Math. J., 44 (1995), 545.  doi: 10.1512/iumj.1995.44.2001.  Google Scholar

[6]

T. Eisner, Stability of Operators and Operator Semigroups,, Operator Theory: Advances and Applications, (2010).   Google Scholar

[7]

K.-J. Engel, Generator property and stability for generalized difference operators,, J. Evol. Equ., 13 (2013), 311.  doi: 10.1007/s00028-013-0179-1.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000).  doi: 10.1007/b97696.  Google Scholar

[9]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces,, Trans. Amer. Math. Soc., 236 (1978), 385.  doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[10]

F. Guo and F. Huang, Boundary feedback stabilization of the undamped Euler-Bernoulli beam with both ends free,, SIAM J. Control Optim., 43 (2004), 341.  doi: 10.1137/S0363012901380961.  Google Scholar

[11]

B.-Z. Guo, J.-M. Wang and S.-P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam,, Systems Control Lett., 54 (2005), 557.  doi: 10.1016/j.sysconle.2004.10.006.  Google Scholar

[12]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Operator Theory: Advances and Applications, (2012).  doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[13]

Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators,, SIAM J. Control Optim., 44 (2005), 1864.  doi: 10.1137/040611677.  Google Scholar

[14]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Math. Pura Appl., 152 (1988), 281.  doi: 10.1007/BF01766154.  Google Scholar

[15]

K. Liu and Z. Liu, Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip,, J. Comp. Appl. Math., 114 (2000), 1.  doi: 10.1016/S0377-0427(99)00284-8.  Google Scholar

[16]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.   Google Scholar

[17]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[18]

H. Ramirez, H. Zwart and Y. Le Gorrec, Exponential Stability of Boundary Controlled Port Hamiltonian Systems with Dynamic Feedback,, IFAC Workshop on Control of Sys. Modeled by Part. Diff. Equ., (2014).  doi: 10.1109/TAC.2014.2315754.  Google Scholar

[19]

H. Triebel, Theory of Function Spaces,, Monographs in Mathematics, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[20]

A. J. van der Schaft and B. M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow,, J. Geom. Phys., 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[21]

J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators,, Operator Theory: Advances and Applications, (1996).  doi: 10.1007/978-3-0348-9206-3.  Google Scholar

[22]

J. A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems,, PhD thesis, (2007).   Google Scholar

[23]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems,, IEEE Trans. Automat. Control, 54 (2009), 142.  doi: 10.1109/TAC.2008.2007176.  Google Scholar

[24]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM Contr. Optim. Calc. Var., 16 (2010), 1077.  doi: 10.1051/cocv/2009036.  Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]