June  2014, 3(2): 231-245. doi: 10.3934/eect.2014.3.231

On controllability of a linear elastic beam with memory under longitudinal load

1. 

University of Alaska Fairbanks, Fairbanks, AK 99775-6660, United States

2. 

University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403-2598, United States

Received  January 2013 Revised  March 2014 Published  May 2014

This work is motivated by the control problem for a linear elastic beam under a longitudinal load when the material of the beam has memory. We reduce the problem of controllability to a nonstandard moment problem. The solution of the latter problem is based on the Riesz basis property for a family of functions quadratically close to the nonharmonic exponentials. This result requires the detailed analysis of an integro--differential equation, and is of interest in itself for Function Theory.
Citation: Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations & Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231
References:
[1]

F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type,, J. Differential Equations, 194 (2003), 82.  doi: 10.1016/S0022-0396(03)00185-2.  Google Scholar

[2]

S. A. Avdonin and B. P. Belinskiy, Controllability of a string under tension,, Discrete Contin. Dyn. Syst., (2003), 57.   Google Scholar

[3]

S. A. Avdonin and B. P. Belinskyi, On the basis properties of the functions arising in the boundary control problem of a string with a variable tension,, Discrete Contin. Dyn. Syst., (2005), 40.   Google Scholar

[4]

S. A. Avdonin, B. P. Belinskiy and S. A. Ivanov, On controllability of an elastic ring,, Appl. Math. Optim., 60 (2009), 71.  doi: 10.1007/s00245-009-9064-2.  Google Scholar

[5]

S. A. Avdonin, B. P. Belinskiy and L. Pandolfi, Controllability of a non-homogeneous string and ring under time dependent tension,, Math. Model. Nat. Phenom., 5 (2010), 4.  doi: 10.1051/mmnp/20105401.  Google Scholar

[6]

S. A. Avdonin and B. P. Belinskiy, On controllability of a non-homogeneous elastic string with memory,, J. of Math Analysis and Applications, 398 (2013), 254.  doi: 10.1016/j.jmaa.2012.08.037.  Google Scholar

[7]

S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995).   Google Scholar

[8]

S. A. Avdonin and S. A. Ivanov, Exponential Riesz bases of subspaces and divided differences,, St. Petersburg Mathematical Journal, 13 (2002), 339.   Google Scholar

[9]

S. Avdonin and W. Moran, Ingham type inequalities and Riesz bases of divided differences,, International J. of Applied Math. and Computer Science, 11 (2001), 803.   Google Scholar

[10]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory,, Quarterly of Applied Mathematics, 71 (2013), 339.  doi: 10.1090/S0033-569X-2012-01287-7.  Google Scholar

[11]

S. A. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory,, in Time Delay Systems: Methods, (2011), 87.  doi: 10.1007/978-3-642-25221-1_7.  Google Scholar

[12]

N. K. Bari, Biorthogonal systems and bases in Hilbert space,, (in Russian) Moskov. Gos. Univ. Učen. Zap., 148 (1951), 69.   Google Scholar

[13]

S. Breuer, On energy stored in linear viscoelastic solids,, ZAMM-J. Appl. Math. and Mechanics, 55 (1975), 403.  doi: 10.1002/zamm.19750550708.  Google Scholar

[14]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Archive for Rational Mechanics and Anal., 37 (1970), 297.   Google Scholar

[15]

S. Dolecki and D. L. Russell, A general theory of observation and control,, SIAM J. Control Optim., 15 (1977), 185.  doi: 10.1137/0315015.  Google Scholar

[16]

A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity,, North-Holland Series in Applied Mathematics and Mechanics, (1994).   Google Scholar

[17]

M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory,, Appl. Anal., 81 (2002), 1245.  doi: 10.1080/0003681021000035588.  Google Scholar

[18]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators,, Translation of Mathematical Monographs, (1969).   Google Scholar

[19]

J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping,, International Series of Numerical Mathematics, 91 (1989), 211.   Google Scholar

[20]

G. Leugering, On boundary feedback stabilisability of a viscoelastic beam,, Proc. of the Royal Soc. of Edinburgh, 114 (1990), 57.  doi: 10.1017/S0308210500024264.  Google Scholar

[21]

G. Leugering, Exact controllability in viscoelasticity of fading memory type,, Applicable Anal., 18 (1984), 221.  doi: 10.1080/00036818408839521.  Google Scholar

[22]

G. Leugering, Boundary controllability of a viscoelastic beam,, Applicable Anal., 23 (1986), 119.  doi: 10.1080/00036818608839635.  Google Scholar

[23]

J. L. Lions and E. Magenes, Problèmes aux Limites Nonhomogénes et Applications, 1 & 2,, Dunod, (1968).   Google Scholar

[24]

W. J. Liuand and G. H. Williams, Partial exact controllability for the linear thermo-elastic model,, Electronic J. Differential Equations, (1998).   Google Scholar

[25]

V. P. Madan, Response of a viscoelastic beam to an impulsive excitation,, Mathematika, 16 (1969), 205.  doi: 10.1112/S0025579300008172.  Google Scholar

[26]

J. E. Munoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, J. Math. Anal. Appl., 286 (2003), 692.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[27]

L. Pandolfi, Riesz system and the controllability of heat equations with memory,, Integral Equations Operator Theory, 64 (2009), 429.  doi: 10.1007/s00020-009-1682-1.  Google Scholar

[28]

L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension,, Discrete Contin. Dyn. Syst., 14 (2010), 1487.  doi: 10.3934/dcdsb.2010.14.1487.  Google Scholar

[29]

D. L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems,, J. Math. Anal. Appl., 18 (1967), 542.  doi: 10.1016/0022-247X(67)90045-5.  Google Scholar

[30]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[31]

D. L. Russell, On exponential bases for the Sobolev spaces over an interval,, J. Math. Anal. Appl., 87 (1982), 528.  doi: 10.1016/0022-247X(82)90142-1.  Google Scholar

[32]

K. Seip, On the connection between exponential bases and certain related sequences in $L_2(\pi,\pi)$,, J. Functional Anal., 130 (1995), 131.  doi: 10.1006/jfan.1995.1066.  Google Scholar

[33]

W. C. Xie, Dynamic Stability of Structures,, Cambridge University Press, (2006).   Google Scholar

[34]

R. M. Young, An Introduction to Nonharmonic Fourier Series,, Academic Press, (2001).   Google Scholar

show all references

References:
[1]

F. Ammar-Khodja, A. Benabdallah, J. E. Munoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type,, J. Differential Equations, 194 (2003), 82.  doi: 10.1016/S0022-0396(03)00185-2.  Google Scholar

[2]

S. A. Avdonin and B. P. Belinskiy, Controllability of a string under tension,, Discrete Contin. Dyn. Syst., (2003), 57.   Google Scholar

[3]

S. A. Avdonin and B. P. Belinskyi, On the basis properties of the functions arising in the boundary control problem of a string with a variable tension,, Discrete Contin. Dyn. Syst., (2005), 40.   Google Scholar

[4]

S. A. Avdonin, B. P. Belinskiy and S. A. Ivanov, On controllability of an elastic ring,, Appl. Math. Optim., 60 (2009), 71.  doi: 10.1007/s00245-009-9064-2.  Google Scholar

[5]

S. A. Avdonin, B. P. Belinskiy and L. Pandolfi, Controllability of a non-homogeneous string and ring under time dependent tension,, Math. Model. Nat. Phenom., 5 (2010), 4.  doi: 10.1051/mmnp/20105401.  Google Scholar

[6]

S. A. Avdonin and B. P. Belinskiy, On controllability of a non-homogeneous elastic string with memory,, J. of Math Analysis and Applications, 398 (2013), 254.  doi: 10.1016/j.jmaa.2012.08.037.  Google Scholar

[7]

S. A. Avdonin and S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995).   Google Scholar

[8]

S. A. Avdonin and S. A. Ivanov, Exponential Riesz bases of subspaces and divided differences,, St. Petersburg Mathematical Journal, 13 (2002), 339.   Google Scholar

[9]

S. Avdonin and W. Moran, Ingham type inequalities and Riesz bases of divided differences,, International J. of Applied Math. and Computer Science, 11 (2001), 803.   Google Scholar

[10]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equations with memory,, Quarterly of Applied Mathematics, 71 (2013), 339.  doi: 10.1090/S0033-569X-2012-01287-7.  Google Scholar

[11]

S. A. Avdonin and L. Pandolfi, Temperature and heat flux dependence/independence for heat equations with memory,, in Time Delay Systems: Methods, (2011), 87.  doi: 10.1007/978-3-642-25221-1_7.  Google Scholar

[12]

N. K. Bari, Biorthogonal systems and bases in Hilbert space,, (in Russian) Moskov. Gos. Univ. Učen. Zap., 148 (1951), 69.   Google Scholar

[13]

S. Breuer, On energy stored in linear viscoelastic solids,, ZAMM-J. Appl. Math. and Mechanics, 55 (1975), 403.  doi: 10.1002/zamm.19750550708.  Google Scholar

[14]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Archive for Rational Mechanics and Anal., 37 (1970), 297.   Google Scholar

[15]

S. Dolecki and D. L. Russell, A general theory of observation and control,, SIAM J. Control Optim., 15 (1977), 185.  doi: 10.1137/0315015.  Google Scholar

[16]

A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity,, North-Holland Series in Applied Mathematics and Mechanics, (1994).   Google Scholar

[17]

M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory,, Appl. Anal., 81 (2002), 1245.  doi: 10.1080/0003681021000035588.  Google Scholar

[18]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators,, Translation of Mathematical Monographs, (1969).   Google Scholar

[19]

J. E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping,, International Series of Numerical Mathematics, 91 (1989), 211.   Google Scholar

[20]

G. Leugering, On boundary feedback stabilisability of a viscoelastic beam,, Proc. of the Royal Soc. of Edinburgh, 114 (1990), 57.  doi: 10.1017/S0308210500024264.  Google Scholar

[21]

G. Leugering, Exact controllability in viscoelasticity of fading memory type,, Applicable Anal., 18 (1984), 221.  doi: 10.1080/00036818408839521.  Google Scholar

[22]

G. Leugering, Boundary controllability of a viscoelastic beam,, Applicable Anal., 23 (1986), 119.  doi: 10.1080/00036818608839635.  Google Scholar

[23]

J. L. Lions and E. Magenes, Problèmes aux Limites Nonhomogénes et Applications, 1 & 2,, Dunod, (1968).   Google Scholar

[24]

W. J. Liuand and G. H. Williams, Partial exact controllability for the linear thermo-elastic model,, Electronic J. Differential Equations, (1998).   Google Scholar

[25]

V. P. Madan, Response of a viscoelastic beam to an impulsive excitation,, Mathematika, 16 (1969), 205.  doi: 10.1112/S0025579300008172.  Google Scholar

[26]

J. E. Munoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, J. Math. Anal. Appl., 286 (2003), 692.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[27]

L. Pandolfi, Riesz system and the controllability of heat equations with memory,, Integral Equations Operator Theory, 64 (2009), 429.  doi: 10.1007/s00020-009-1682-1.  Google Scholar

[28]

L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension,, Discrete Contin. Dyn. Syst., 14 (2010), 1487.  doi: 10.3934/dcdsb.2010.14.1487.  Google Scholar

[29]

D. L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems,, J. Math. Anal. Appl., 18 (1967), 542.  doi: 10.1016/0022-247X(67)90045-5.  Google Scholar

[30]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations,, SIAM Rev., 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[31]

D. L. Russell, On exponential bases for the Sobolev spaces over an interval,, J. Math. Anal. Appl., 87 (1982), 528.  doi: 10.1016/0022-247X(82)90142-1.  Google Scholar

[32]

K. Seip, On the connection between exponential bases and certain related sequences in $L_2(\pi,\pi)$,, J. Functional Anal., 130 (1995), 131.  doi: 10.1006/jfan.1995.1066.  Google Scholar

[33]

W. C. Xie, Dynamic Stability of Structures,, Cambridge University Press, (2006).   Google Scholar

[34]

R. M. Young, An Introduction to Nonharmonic Fourier Series,, Academic Press, (2001).   Google Scholar

[1]

Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018

[2]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : ⅰ-ⅴ. doi: 10.3934/dcdsb.20193i

[3]

Tao Chen, Linda Keen. Slices of parameter spaces of generalized Nevanlinna functions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5659-5681. doi: 10.3934/dcds.2019248

[4]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[5]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[6]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[7]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[8]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[9]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics & Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[10]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[11]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[12]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[13]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[14]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

[15]

M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208

[16]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[17]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[18]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[19]

Sergei Avdonin, Julian Edward. Controllability for a string with attached masses and Riesz bases for asymmetric spaces. Mathematical Control & Related Fields, 2019, 9 (3) : 453-494. doi: 10.3934/mcrf.2019021

[20]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]