    June  2014, 3(2): 247-256. doi: 10.3934/eect.2014.3.247

## Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$

 1 Saint-Petersburg Department of the Steklov Mathematical Institute, Saint-Petersburg State University, Russian Federation, Russian Federation

Received  November 2013 Revised  April 2014 Published  May 2014

The paper deals with a dynamical system \begin{align*} &u_{tt}-\Delta u=0, \qquad (x,t) \in {\mathbb R}^3 \times (-\infty,0) \\ &u \mid_{|x|<-t} =0 , \qquad t<0\\ &\lim_{s \to \infty} su((s+\tau)\omega,-s)=f(\tau,\omega), \qquad (\tau,\omega) \in [0,\infty)\times S^2\,, \end{align*} where $u=u^f(x,t)$ is a solution ( wave), $f \in {\mathcal F}:=L_2\left([0,\infty);L_2\left(S^2\right)\right)$ is a control. For the reachable sets ${\mathcal U}^\xi:=\{u^f(\cdot,-\xi)\,|\,\, f \in {\mathcal F}\}\,\,(\xi\geq 0)$, the embedding ${\mathcal U}^\xi \subset {\mathcal H}^\xi:=\{y \in L_2({\mathbb R}^3)\,|\,\,\,y|_{|x|<\xi}=0\}$ holds, whereas the subspaces ${\mathcal D}^\xi:={\mathcal H}^\xi \ominus {\mathcal U}^\xi$ of unreachable ( unobservable) states are nonzero for $\xi> 0$. There was a conjecture motivated by some geometrical optics arguments that the elements of ${\mathcal D}^\xi$ are $C^\infty$-smooth with respect to $|x|$. We provide rather unexpected counterexamples of $h\in {\mathcal D}^\xi$ with ${\rm sing\,supp\,}h \subset \{x\in{\mathbb R}^3|\,\,|x|=\xi_0>\xi\}$.
Citation: Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations & Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247
##### References:
  S. A. Avdonin, M. I. Belishev and S. I. Ivanov, Controllability in the filled domain for the wave equation with a singular boundary control,, (in Russian) Zap. Nauch. Semin. POMI, 210 (1994), 7.  doi: 10.1007/BF02405808.  Google Scholar  M. I. Belishev, Recent progress in the boundary control method,, Invers Problems, 23 (2007).  doi: 10.1088/0266-5611/23/5/R01.  Google Scholar  M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbbR^3$,, (in Russian) Zap. Nauch. Semin. POMI, 332 (2006), 19.  doi: 10.1007/s10958-007-0140-3.  Google Scholar  M. I. Belishev and A. F. Vakulenko, Reachable and unreachable sets in the scattering problem for the acoustical equation in $\mathbbR^3$,, SIAM J. Math. Analysis, 39 (2008), 1821.  doi: 10.1137/060678877.  Google Scholar  M. I. Belishev and A. F. Vakulenko, $s$-points in three-dimensional acoustical scattering,, SIAM J. Math. Analysis, 42 (2010), 2703.  doi: 10.1137/090781486.  Google Scholar  S. Helgason, The Radon Transform,, Birhausser, (1999).  doi: 10.1007/978-1-4757-1463-0.  Google Scholar  L. Hörmander, The Analysis of Linear Partial Differential Operators I,, Springer-Verlag, (1983).   Google Scholar  M. Ikawa, Hyperbolic Partial Differential Equations and Wave Fenomena,, Translated from the 1997 Japanese original by Bohdan I. Kurpita, (1997). Google Scholar  I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl, 65 (1986), 149. Google Scholar  P. Lax and R. Phillips, Scattering Theory,, Academic Press, (1967). Google Scholar  D. L. Russell, Boundary value control theory of the higher-dimensional wave equation,, SIAM J. Control, 9 (1971), 29.  doi: 10.1137/0309004.  Google Scholar

show all references

##### References:
  S. A. Avdonin, M. I. Belishev and S. I. Ivanov, Controllability in the filled domain for the wave equation with a singular boundary control,, (in Russian) Zap. Nauch. Semin. POMI, 210 (1994), 7.  doi: 10.1007/BF02405808.  Google Scholar  M. I. Belishev, Recent progress in the boundary control method,, Invers Problems, 23 (2007).  doi: 10.1088/0266-5611/23/5/R01.  Google Scholar  M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbbR^3$,, (in Russian) Zap. Nauch. Semin. POMI, 332 (2006), 19.  doi: 10.1007/s10958-007-0140-3.  Google Scholar  M. I. Belishev and A. F. Vakulenko, Reachable and unreachable sets in the scattering problem for the acoustical equation in $\mathbbR^3$,, SIAM J. Math. Analysis, 39 (2008), 1821.  doi: 10.1137/060678877.  Google Scholar  M. I. Belishev and A. F. Vakulenko, $s$-points in three-dimensional acoustical scattering,, SIAM J. Math. Analysis, 42 (2010), 2703.  doi: 10.1137/090781486.  Google Scholar  S. Helgason, The Radon Transform,, Birhausser, (1999).  doi: 10.1007/978-1-4757-1463-0.  Google Scholar  L. Hörmander, The Analysis of Linear Partial Differential Operators I,, Springer-Verlag, (1983).   Google Scholar  M. Ikawa, Hyperbolic Partial Differential Equations and Wave Fenomena,, Translated from the 1997 Japanese original by Bohdan I. Kurpita, (1997). Google Scholar  I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl, 65 (1986), 149. Google Scholar  P. Lax and R. Phillips, Scattering Theory,, Academic Press, (1967). Google Scholar  D. L. Russell, Boundary value control theory of the higher-dimensional wave equation,, SIAM J. Control, 9 (1971), 29.  doi: 10.1137/0309004.  Google Scholar
  Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074  Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264  Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381  Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297  Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019  Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011  Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450  Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273  Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433  Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020  Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466  Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046  Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 0.953