June  2014, 3(2): 247-256. doi: 10.3934/eect.2014.3.247

Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$

1. 

Saint-Petersburg Department of the Steklov Mathematical Institute, Saint-Petersburg State University, Russian Federation, Russian Federation

Received  November 2013 Revised  April 2014 Published  May 2014

The paper deals with a dynamical system \begin{align*} &u_{tt}-\Delta u=0, \qquad (x,t) \in {\mathbb R}^3 \times (-\infty,0) \\ &u \mid_{|x|<-t} =0 , \qquad t<0\\ &\lim_{s \to \infty} su((s+\tau)\omega,-s)=f(\tau,\omega), \qquad (\tau,\omega) \in [0,\infty)\times S^2\,, \end{align*} where $u=u^f(x,t)$ is a solution ( wave), $f \in {\mathcal F}:=L_2\left([0,\infty);L_2\left(S^2\right)\right)$ is a control. For the reachable sets ${\mathcal U}^\xi:=\{u^f(\cdot,-\xi)\,|\,\, f \in {\mathcal F}\}\,\,(\xi\geq 0)$, the embedding ${\mathcal U}^\xi \subset {\mathcal H}^\xi:=\{y \in L_2({\mathbb R}^3)\,|\,\,\,y|_{|x|<\xi}=0\}$ holds, whereas the subspaces ${\mathcal D}^\xi:={\mathcal H}^\xi \ominus {\mathcal U}^\xi$ of unreachable ( unobservable) states are nonzero for $\xi> 0$. There was a conjecture motivated by some geometrical optics arguments that the elements of ${\mathcal D}^\xi$ are $C^\infty$-smooth with respect to $|x|$. We provide rather unexpected counterexamples of $h\in {\mathcal D}^\xi$ with ${\rm sing\,supp\,}h \subset \{x\in{\mathbb R}^3|\,\,|x|=\xi_0>\xi\}$.
Citation: Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations & Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247
References:
[1]

S. A. Avdonin, M. I. Belishev and S. I. Ivanov, Controllability in the filled domain for the wave equation with a singular boundary control,, (in Russian) Zap. Nauch. Semin. POMI, 210 (1994), 7.  doi: 10.1007/BF02405808.  Google Scholar

[2]

M. I. Belishev, Recent progress in the boundary control method,, Invers Problems, 23 (2007).  doi: 10.1088/0266-5611/23/5/R01.  Google Scholar

[3]

M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbbR^3$,, (in Russian) Zap. Nauch. Semin. POMI, 332 (2006), 19.  doi: 10.1007/s10958-007-0140-3.  Google Scholar

[4]

M. I. Belishev and A. F. Vakulenko, Reachable and unreachable sets in the scattering problem for the acoustical equation in $\mathbbR^3$,, SIAM J. Math. Analysis, 39 (2008), 1821.  doi: 10.1137/060678877.  Google Scholar

[5]

M. I. Belishev and A. F. Vakulenko, $s$-points in three-dimensional acoustical scattering,, SIAM J. Math. Analysis, 42 (2010), 2703.  doi: 10.1137/090781486.  Google Scholar

[6]

S. Helgason, The Radon Transform,, Birhausser, (1999).  doi: 10.1007/978-1-4757-1463-0.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I,, Springer-Verlag, (1983).   Google Scholar

[8]

M. Ikawa, Hyperbolic Partial Differential Equations and Wave Fenomena,, Translated from the 1997 Japanese original by Bohdan I. Kurpita, (1997).   Google Scholar

[9]

I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl, 65 (1986), 149.   Google Scholar

[10]

P. Lax and R. Phillips, Scattering Theory,, Academic Press, (1967).   Google Scholar

[11]

D. L. Russell, Boundary value control theory of the higher-dimensional wave equation,, SIAM J. Control, 9 (1971), 29.  doi: 10.1137/0309004.  Google Scholar

show all references

References:
[1]

S. A. Avdonin, M. I. Belishev and S. I. Ivanov, Controllability in the filled domain for the wave equation with a singular boundary control,, (in Russian) Zap. Nauch. Semin. POMI, 210 (1994), 7.  doi: 10.1007/BF02405808.  Google Scholar

[2]

M. I. Belishev, Recent progress in the boundary control method,, Invers Problems, 23 (2007).  doi: 10.1088/0266-5611/23/5/R01.  Google Scholar

[3]

M. I. Belishev and A. F. Vakulenko, On a control problem for the wave equation in $\mathbbR^3$,, (in Russian) Zap. Nauch. Semin. POMI, 332 (2006), 19.  doi: 10.1007/s10958-007-0140-3.  Google Scholar

[4]

M. I. Belishev and A. F. Vakulenko, Reachable and unreachable sets in the scattering problem for the acoustical equation in $\mathbbR^3$,, SIAM J. Math. Analysis, 39 (2008), 1821.  doi: 10.1137/060678877.  Google Scholar

[5]

M. I. Belishev and A. F. Vakulenko, $s$-points in three-dimensional acoustical scattering,, SIAM J. Math. Analysis, 42 (2010), 2703.  doi: 10.1137/090781486.  Google Scholar

[6]

S. Helgason, The Radon Transform,, Birhausser, (1999).  doi: 10.1007/978-1-4757-1463-0.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I,, Springer-Verlag, (1983).   Google Scholar

[8]

M. Ikawa, Hyperbolic Partial Differential Equations and Wave Fenomena,, Translated from the 1997 Japanese original by Bohdan I. Kurpita, (1997).   Google Scholar

[9]

I. Lasiecka, J-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl, 65 (1986), 149.   Google Scholar

[10]

P. Lax and R. Phillips, Scattering Theory,, Academic Press, (1967).   Google Scholar

[11]

D. L. Russell, Boundary value control theory of the higher-dimensional wave equation,, SIAM J. Control, 9 (1971), 29.  doi: 10.1137/0309004.  Google Scholar

[1]

Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547

[2]

Indranil SenGupta, Weisheng Jiang, Bo Sun, Maria Christina Mariani. Superradiance problem in a 3D annular domain. Conference Publications, 2011, 2011 (Special) : 1309-1318. doi: 10.3934/proc.2011.2011.1309

[3]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[4]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[5]

Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519

[6]

Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1069-1094. doi: 10.3934/dcdss.2016042

[7]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[8]

Alp Eden, Varga K. Kalantarov. 3D convective Cahn--Hilliard equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1075-1086. doi: 10.3934/cpaa.2007.6.1075

[9]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[10]

Masaru Yamaguchi. 3D wave equations in sphere-symmetric domain with periodically oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 385-396. doi: 10.3934/dcds.2001.7.385

[11]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[12]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[13]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[14]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[15]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[16]

Chuntian Wang. The existence of strong solutions to the $3D$ Zakharov-Kuznestov equation in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4897-4910. doi: 10.3934/dcds.2014.34.4897

[17]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[18]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[19]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[20]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]