-
Previous Article
Observability of rectangular membranes and plates on small sets
- EECT Home
- This Issue
-
Next Article
A vanishing diffusion limit in a nonstandard system of phase field equations
An integration model for two different ethnic groups
1. | Department of Mathematics, University of Bologna, Italy |
2. | LNCC, Petropolis, Brazil |
References:
[1] |
C. Argyris and D. Schon, Organizational Learning: A Theory of Action Perspective 22,, Park: Addison-Wesley, (1978). Google Scholar |
[2] |
J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,, Math. Comp., 68 (1999), 487.
doi: 10.1090/S0025-5718-99-01015-7. |
[3] |
A. Berti and I. Bochicchio, A mathematical model for phase separation: A generalized Cahn-Hilliard equation,, Math. Meth. Appl. Sci., 34 (2011), 1193.
doi: 10.1002/mma.1432. |
[4] |
L. Bevilacqua, A. C. Galeão, F. Pietrobon-Costa and S. L. Monteiro, Knowledge diffusion paths in a research chain,, Mecânica Computacional, 24 (2010), 2061. Google Scholar |
[5] |
H. P. Boswijk and P. H. Franses, On the econometrics of the bass diffusion model,, Journal of Business & Economic Statistics, 23 (2005), 255.
doi: 10.1198/073500104000000604. |
[6] |
V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13.
doi: 10.1016/j.physd.2007.07.009. |
[7] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys, 28 (1958), 258.
doi: 10.1063/1.1744102. |
[8] |
J. W. Cahn, C. M. Elliott and A. Novik-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion of minus Laplacian of the mean curvature,, European J. Appl. Math., 7 (1996), 287.
doi: 10.1017/S0956792500002369. |
[9] |
L. L. Cavalli-Sforza and M. Feldman, Cultural Transmission and Evolution,, Princeton University Press, (1981). Google Scholar |
[10] |
E. Collett, Immigrant Integration in Europe in a Time of Austerity,, Migration Policy Institute, (2011). Google Scholar |
[11] |
M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order,, Math. Meth. Appl. Sci., 31 (2008), 627.
doi: 10.1002/mma.930. |
[12] |
M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, European Journal of Mechanics B/Fluids, 30 (2011), 281.
doi: 10.1016/j.euromechflu.2010.12.003. |
[13] |
M. Fabrizio, B. Lazzari and R. Nibbi, Thermodynamics of non-local materials: Extra fluxes and internal powers,, Continuum Mech. Thermodyn, 23 (2011), 509.
doi: 10.1007/s00161-011-0193-x. |
[14] |
M. Gladwell, The Tipping Point. How little things can make a big difference,, Little Brown and Company, (2000). Google Scholar |
[15] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[16] |
J. He, Knowledge management and knowledge fermentation,, Science of Science and Management of S.&.T., 25 (2004), 23. Google Scholar |
[17] |
G. Hedlund, A model of knowledge management and the N-Form corporation,, Strategic Management Journal, 15 (1994), 73.
doi: 10.1002/smj.4250151006. |
[18] |
Z. Li, T. Zhu and W. Lai, A Study on the knowledge diffusion of communities of practice based on the weighted small-world network,, Journal of Computers, 5 (2010), 1046.
doi: 10.4304/jcp.5.7.1046-1053. |
[19] |
R. McAdam, Knowledge creation and idea generations critical quality perspective,, Technovation, 24 (2004), 697. Google Scholar |
[20] |
I. Nonaka and N Konno, The concept of Ba: Building a foundation for knowledge creation,, California Management Review, 40 (1998), 40.
doi: 10.2307/41165942. |
[21] |
Z. Shaoying, The model of dynamic spread knowledge based on organizational learning,, Science Research Management, 24 (2003), 67. Google Scholar |
show all references
References:
[1] |
C. Argyris and D. Schon, Organizational Learning: A Theory of Action Perspective 22,, Park: Addison-Wesley, (1978). Google Scholar |
[2] |
J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,, Math. Comp., 68 (1999), 487.
doi: 10.1090/S0025-5718-99-01015-7. |
[3] |
A. Berti and I. Bochicchio, A mathematical model for phase separation: A generalized Cahn-Hilliard equation,, Math. Meth. Appl. Sci., 34 (2011), 1193.
doi: 10.1002/mma.1432. |
[4] |
L. Bevilacqua, A. C. Galeão, F. Pietrobon-Costa and S. L. Monteiro, Knowledge diffusion paths in a research chain,, Mecânica Computacional, 24 (2010), 2061. Google Scholar |
[5] |
H. P. Boswijk and P. H. Franses, On the econometrics of the bass diffusion model,, Journal of Business & Economic Statistics, 23 (2005), 255.
doi: 10.1198/073500104000000604. |
[6] |
V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13.
doi: 10.1016/j.physd.2007.07.009. |
[7] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys, 28 (1958), 258.
doi: 10.1063/1.1744102. |
[8] |
J. W. Cahn, C. M. Elliott and A. Novik-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion of minus Laplacian of the mean curvature,, European J. Appl. Math., 7 (1996), 287.
doi: 10.1017/S0956792500002369. |
[9] |
L. L. Cavalli-Sforza and M. Feldman, Cultural Transmission and Evolution,, Princeton University Press, (1981). Google Scholar |
[10] |
E. Collett, Immigrant Integration in Europe in a Time of Austerity,, Migration Policy Institute, (2011). Google Scholar |
[11] |
M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order,, Math. Meth. Appl. Sci., 31 (2008), 627.
doi: 10.1002/mma.930. |
[12] |
M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, European Journal of Mechanics B/Fluids, 30 (2011), 281.
doi: 10.1016/j.euromechflu.2010.12.003. |
[13] |
M. Fabrizio, B. Lazzari and R. Nibbi, Thermodynamics of non-local materials: Extra fluxes and internal powers,, Continuum Mech. Thermodyn, 23 (2011), 509.
doi: 10.1007/s00161-011-0193-x. |
[14] |
M. Gladwell, The Tipping Point. How little things can make a big difference,, Little Brown and Company, (2000). Google Scholar |
[15] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[16] |
J. He, Knowledge management and knowledge fermentation,, Science of Science and Management of S.&.T., 25 (2004), 23. Google Scholar |
[17] |
G. Hedlund, A model of knowledge management and the N-Form corporation,, Strategic Management Journal, 15 (1994), 73.
doi: 10.1002/smj.4250151006. |
[18] |
Z. Li, T. Zhu and W. Lai, A Study on the knowledge diffusion of communities of practice based on the weighted small-world network,, Journal of Computers, 5 (2010), 1046.
doi: 10.4304/jcp.5.7.1046-1053. |
[19] |
R. McAdam, Knowledge creation and idea generations critical quality perspective,, Technovation, 24 (2004), 697. Google Scholar |
[20] |
I. Nonaka and N Konno, The concept of Ba: Building a foundation for knowledge creation,, California Management Review, 40 (1998), 40.
doi: 10.2307/41165942. |
[21] |
Z. Shaoying, The model of dynamic spread knowledge based on organizational learning,, Science Research Management, 24 (2003), 67. Google Scholar |
[1] |
Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 |
[2] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 |
[3] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289 |
[4] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[5] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[6] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[7] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[8] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[9] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[10] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[11] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[12] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008 |
[13] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[14] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[15] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[16] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[17] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[18] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[19] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[20] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]