June  2014, 3(2): 277-286. doi: 10.3934/eect.2014.3.277

An integration model for two different ethnic groups

1. 

Department of Mathematics, University of Bologna, Italy

2. 

LNCC, Petropolis, Brazil

Received  October 2013 Revised  February 2014 Published  May 2014

For the purpose of studying the integration of two different ethnic populations, we compare their evolution with that of a mixture of two fluids. For this model we consider the concentration of only one species, whose evolution will be described by a Cahn-Hilliard equation. Instead, the separation between the two phases will be controlled by the educational levels of two components. Finally, we assume that the homogenization phase occurs when the mean of the cultural levels is greater then a critical value.
Citation: Mauro Fabrizio, Jaime Munõz Rivera. An integration model for two different ethnic groups. Evolution Equations & Control Theory, 2014, 3 (2) : 277-286. doi: 10.3934/eect.2014.3.277
References:
[1]

C. Argyris and D. Schon, Organizational Learning: A Theory of Action Perspective 22,, Park: Addison-Wesley, (1978).   Google Scholar

[2]

J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,, Math. Comp., 68 (1999), 487.  doi: 10.1090/S0025-5718-99-01015-7.  Google Scholar

[3]

A. Berti and I. Bochicchio, A mathematical model for phase separation: A generalized Cahn-Hilliard equation,, Math. Meth. Appl. Sci., 34 (2011), 1193.  doi: 10.1002/mma.1432.  Google Scholar

[4]

L. Bevilacqua, A. C. Galeão, F. Pietrobon-Costa and S. L. Monteiro, Knowledge diffusion paths in a research chain,, Mecânica Computacional, 24 (2010), 2061.   Google Scholar

[5]

H. P. Boswijk and P. H. Franses, On the econometrics of the bass diffusion model,, Journal of Business & Economic Statistics, 23 (2005), 255.  doi: 10.1198/073500104000000604.  Google Scholar

[6]

V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13.  doi: 10.1016/j.physd.2007.07.009.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys, 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[8]

J. W. Cahn, C. M. Elliott and A. Novik-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion of minus Laplacian of the mean curvature,, European J. Appl. Math., 7 (1996), 287.  doi: 10.1017/S0956792500002369.  Google Scholar

[9]

L. L. Cavalli-Sforza and M. Feldman, Cultural Transmission and Evolution,, Princeton University Press, (1981).   Google Scholar

[10]

E. Collett, Immigrant Integration in Europe in a Time of Austerity,, Migration Policy Institute, (2011).   Google Scholar

[11]

M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order,, Math. Meth. Appl. Sci., 31 (2008), 627.  doi: 10.1002/mma.930.  Google Scholar

[12]

M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, European Journal of Mechanics B/Fluids, 30 (2011), 281.  doi: 10.1016/j.euromechflu.2010.12.003.  Google Scholar

[13]

M. Fabrizio, B. Lazzari and R. Nibbi, Thermodynamics of non-local materials: Extra fluxes and internal powers,, Continuum Mech. Thermodyn, 23 (2011), 509.  doi: 10.1007/s00161-011-0193-x.  Google Scholar

[14]

M. Gladwell, The Tipping Point. How little things can make a big difference,, Little Brown and Company, (2000).   Google Scholar

[15]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[16]

J. He, Knowledge management and knowledge fermentation,, Science of Science and Management of S.&.T., 25 (2004), 23.   Google Scholar

[17]

G. Hedlund, A model of knowledge management and the N-Form corporation,, Strategic Management Journal, 15 (1994), 73.  doi: 10.1002/smj.4250151006.  Google Scholar

[18]

Z. Li, T. Zhu and W. Lai, A Study on the knowledge diffusion of communities of practice based on the weighted small-world network,, Journal of Computers, 5 (2010), 1046.  doi: 10.4304/jcp.5.7.1046-1053.  Google Scholar

[19]

R. McAdam, Knowledge creation and idea generations critical quality perspective,, Technovation, 24 (2004), 697.   Google Scholar

[20]

I. Nonaka and N Konno, The concept of Ba: Building a foundation for knowledge creation,, California Management Review, 40 (1998), 40.  doi: 10.2307/41165942.  Google Scholar

[21]

Z. Shaoying, The model of dynamic spread knowledge based on organizational learning,, Science Research Management, 24 (2003), 67.   Google Scholar

show all references

References:
[1]

C. Argyris and D. Schon, Organizational Learning: A Theory of Action Perspective 22,, Park: Addison-Wesley, (1978).   Google Scholar

[2]

J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility,, Math. Comp., 68 (1999), 487.  doi: 10.1090/S0025-5718-99-01015-7.  Google Scholar

[3]

A. Berti and I. Bochicchio, A mathematical model for phase separation: A generalized Cahn-Hilliard equation,, Math. Meth. Appl. Sci., 34 (2011), 1193.  doi: 10.1002/mma.1432.  Google Scholar

[4]

L. Bevilacqua, A. C. Galeão, F. Pietrobon-Costa and S. L. Monteiro, Knowledge diffusion paths in a research chain,, Mecânica Computacional, 24 (2010), 2061.   Google Scholar

[5]

H. P. Boswijk and P. H. Franses, On the econometrics of the bass diffusion model,, Journal of Business & Economic Statistics, 23 (2005), 255.  doi: 10.1198/073500104000000604.  Google Scholar

[6]

V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity,, Physica D, 236 (2007), 13.  doi: 10.1016/j.physd.2007.07.009.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys, 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[8]

J. W. Cahn, C. M. Elliott and A. Novik-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion of minus Laplacian of the mean curvature,, European J. Appl. Math., 7 (1996), 287.  doi: 10.1017/S0956792500002369.  Google Scholar

[9]

L. L. Cavalli-Sforza and M. Feldman, Cultural Transmission and Evolution,, Princeton University Press, (1981).   Google Scholar

[10]

E. Collett, Immigrant Integration in Europe in a Time of Austerity,, Migration Policy Institute, (2011).   Google Scholar

[11]

M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order,, Math. Meth. Appl. Sci., 31 (2008), 627.  doi: 10.1002/mma.930.  Google Scholar

[12]

M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids,, European Journal of Mechanics B/Fluids, 30 (2011), 281.  doi: 10.1016/j.euromechflu.2010.12.003.  Google Scholar

[13]

M. Fabrizio, B. Lazzari and R. Nibbi, Thermodynamics of non-local materials: Extra fluxes and internal powers,, Continuum Mech. Thermodyn, 23 (2011), 509.  doi: 10.1007/s00161-011-0193-x.  Google Scholar

[14]

M. Gladwell, The Tipping Point. How little things can make a big difference,, Little Brown and Company, (2000).   Google Scholar

[15]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[16]

J. He, Knowledge management and knowledge fermentation,, Science of Science and Management of S.&.T., 25 (2004), 23.   Google Scholar

[17]

G. Hedlund, A model of knowledge management and the N-Form corporation,, Strategic Management Journal, 15 (1994), 73.  doi: 10.1002/smj.4250151006.  Google Scholar

[18]

Z. Li, T. Zhu and W. Lai, A Study on the knowledge diffusion of communities of practice based on the weighted small-world network,, Journal of Computers, 5 (2010), 1046.  doi: 10.4304/jcp.5.7.1046-1053.  Google Scholar

[19]

R. McAdam, Knowledge creation and idea generations critical quality perspective,, Technovation, 24 (2004), 697.   Google Scholar

[20]

I. Nonaka and N Konno, The concept of Ba: Building a foundation for knowledge creation,, California Management Review, 40 (1998), 40.  doi: 10.2307/41165942.  Google Scholar

[21]

Z. Shaoying, The model of dynamic spread knowledge based on organizational learning,, Science Research Management, 24 (2003), 67.   Google Scholar

[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[3]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[4]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[5]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[6]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[7]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[8]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[9]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[12]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008

[13]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[14]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[15]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[18]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[19]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]