Citation: |
[1] |
C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8), 2 (1999), 33-63. |
[2] |
C. Baiocchi, V. Komornik and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (2002), 55-95.doi: 10.1023/A:1020806811956. |
[3] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.doi: 10.1137/0330055. |
[4] |
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. |
[5] |
S. Gasmi and A. Haraux, $N$-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pures Appl., 97 (2012), 411-423.doi: 10.1016/j.matpur.2009.08.005. |
[6] |
A. Haraux, On a completion problem in the theory of distributed control of wave equations, in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. X (Paris, 1987-1988), Pitman Res. Notes Math. Ser., 220, Longman Sci. Tech., Harlow, 1991, 241-271. |
[7] |
A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. |
[8] |
L. F. Ho, Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443-446. |
[9] |
A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.doi: 10.1007/BF01180426. |
[10] |
S. Jaffard, Contrôle interne exact des vibrations d'une plaque carrée, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 759-762. |
[11] |
S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire, Portugalia Math., 47 (1990), 423-429. |
[12] |
V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005. |
[13] |
V. Komornik and P. Loreti, Multiple-point internal observability of membranes and plates, Appl. Anal., 90 (2011), 1545-1555.doi: 10.1080/00036811.2011.569497. |
[14] |
V. Komornik and B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equations and Control Theory, 3 (2014), 135-146.doi: 10.3934/eect.2014.3.135. |
[15] |
J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.doi: 10.1137/1030001. |
[16] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, Masson, Paris, 1988. |
[17] |
P. Loreti, On some gap theorems, in European Women in Mathematics-Marseille 2003, CWI Tract, 135, Centrum Wisk. Inform., Amsterdam, 2005, 39-45. |
[18] |
P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem, ESAIM Control Optim. Calc. Var., 14 (2008), 604-631.doi: 10.1051/cocv:2007062. |
[19] |
P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim., 35 (1997), 641-653.doi: 10.1137/S036301299526962X. |
[20] |
M. Mehrenberger, An Ingham type proof for the boundary observability of a N-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.doi: 10.1016/j.crma.2008.11.002. |
[21] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), 514-544.doi: 10.1007/s00041-013-9267-4. |
[22] |
G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation, Trans. Amer. Math. Soc., 361 (2009), 951-977.doi: 10.1090/S0002-9947-08-04584-4. |