\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Modeling and control of hybrid beam systems with rotating tip component

Abstract Related Papers Cited by
  • We study control and stability for two types of hybrid elastic structures consisting of distributed parameter, beam and rod type, elements coupled at one end to a rotating lumped mass. Applications to control of structural vibrations in wind energy units are indicated but not treated explicitly.
    Mathematics Subject Classification: 70G10, 70H03, 70H25, 70J30, 93C05, 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. D. Aouragh and N. Yebari, Riesz basis approach and exponential stabilization of a nonhomogeneous flexible beam with a tip mass, Int. J. Math. & Stat., 7, (2010), 46-53.

    [2]

    S. Avdonin and S. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, Cambridge, New York, Melbourne, 1995.

    [3]

    M. Azam, S. N. Singh, A. Iyer and Y. P. Kakad, Detumbling and reorientation maneuvers and stabilization of NASA SCOLE system, IEEE Trans. Aerosp. & Electr. Syst., 28 (1992), 80-91.doi: 10.1109/7.135434.

    [4]

    C. Baiocchi, V. Komornik and P. Loreti, Théorèmes du type Ingham et application à la théorie du contrôle, C. R. Acad. Sci. Paris Sér. I, Math., 326 (1998), 453-458.doi: 10.1016/S0764-4442(97)89791-1.

    [5]

    M. L. Boas, Mathematical Methods in the Physical Sciences, Wiley, New York, 2006.

    [6]

    W. E. Boyce and G. H. Handelman, Vibrations of rotating beams with tip mass, Angew. Math. & Phys., 12 (1961), 369-392.doi: 10.1007/BF01600687.

    [7]

    F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass, SIAM J. Control. & Opt., 36 (1998), 1962-1986.doi: 10.1137/S0363012996302366.

    [8]

    M. Grobbelaar - Van Dalsen, Uniform stability for the Timoshenko beam with tip load, J. Math. Anal. & and Appl., 361 (2010), 392-400.doi: 10.1016/j.jmaa.2009.06.059.

    [9]

    B.-Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control. & Opt., 39 (2001), 1736-1747.doi: 10.1137/S0363012999354880.

    [10]

    J. Humar and M. Ruban, Dynamics of Structures, CRC Press, Boca Raton, 2002.

    [11]

    A. E. Ingham, Some trigonometric inequalities in the theory of series, Math. Zeitschr., 41 (1936), 367-379.doi: 10.1007/BF01180426.

    [12]

    R. N. Jazar, Advanced Dynamics: Rigid Body, Multibody and Aerospace Applications, John Wiley & Sons, New York, 2011.doi: 10.1002/9780470950029.

    [13]

    J. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, with Applications, Mathematics in Science and Engineering, Academic Press, New York and London, 1961.

    [14]

    W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Ann. Mat. Pura & Appl., 152 (1988), 281-330.doi: 10.1007/BF01766154.

    [15]

    W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity, Arch. Rat. Mech. & Anal., 103 (1988), 193-236.doi: 10.1007/BF00251758.

    [16]

    Ö. Morgül, B. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass, IEEE Trans. Automat. Control, 39 (1994), 2140-2145.doi: 10.1109/9.328811.

    [17]

    B. P. Rao, Uniform stabilization of a hybrid system of elasticity, SIAM J. Control. & Opt., 33 (1995), 440-454.doi: 10.1137/S0363012992239879.

    [18]

    D. L. Russell, Nonharmonic Fourier Series in the Control Theory of Distributed Parameter Systems, J. Math. Anal. & Appl., 18 (1967), 542-560.doi: 10.1016/0022-247X(67)90045-5.

    [19]

    D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639-739.doi: 10.1137/1020095.

    [20]

    D. L. Russell, Control via decoupling of a class of second order linear hybrid systems, to appear in Disc. & Cont. Dyn. Syst., 2014.

    [21]

    E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. With an Introduction to the Problem of Three Bodies, Reprint of the 1937 edition, With a foreword by William McCrea, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.doi: 10.1017/CBO9780511608797.

    [22]

    N. Yebari and M. D. Aouragh, Uniform stabilization of a hybrid system of elasticity with variable coefficients, Int. J. Tomogr. & Stat., 10 (2008), 125-140.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return