June  2014, 3(2): 331-348. doi: 10.3934/eect.2014.3.331

Shape optimization for non-Newtonian fluids in time-dependent domains

1. 

Institut Élie Cartan Nancy, UMR 7502((Université Lorraine, CNRS, INRIA), Laboratoire de Mathématiques, Université de Lorraine, B.P.239, 54506 Vandoeuvre-lès-Nancy Cedex, France

2. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 110 00 Praha 1, Czech Republic

Received  September 2013 Revised  February 2014 Published  May 2014

We study the model of an incompressible non-Newtonian fluid in a~moving domain. The domain is defined as a tube built by the velocity field $\mathbf{V}$ and described by the family of domains $\Omega_t$ parametrized by $t\in[0,T]$. A new shape optimization problem associated with the model is defined for a family of initial domains $\Omega_0$ and admissible velocity vector fields. It is shown that such shape optimization problems are well posed under the classical conditions on compactness of the admissible shapes [18]. For the state problem, we prove the existence of weak solutions and their continuity with respect to perturbations of the time-dependent boundary, provided that the power-law index $r\ge11/5$.
Citation: Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331
References:
[1]

N. Arada, Regularity of flows and optimal control of shear-thinning fluids,, Nonlinear Analysis: Theory, 89 (2013), 81.  doi: 10.1016/j.na.2013.04.015.  Google Scholar

[2]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations,, Mem. Amer. Math. Soc., 181 (2006).  doi: 10.1090/memo/0852.  Google Scholar

[3]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization,, Second edition, (2011).  doi: 10.1137/1.9780898719826.  Google Scholar

[4]

M. C. Delfour and J. P. Zolésio, Oriented distance function and its evolution equation for initial sets with thin boundary,, SIAM Journal on Control and Optimization, 42 (2004), 2286.  doi: 10.1137/S0363012902411945.  Google Scholar

[5]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Annali della Scuola Normale Superiore di Pisa. Classe di scienze, 9 (2010), 1.   Google Scholar

[6]

R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical navier-stokes equations,, Journal of Convex Analysis, 6 (1999), 293.   Google Scholar

[7]

E. Feireisl, O. Kreml, Š. Nečasová, J. Neustupa and J. Stebel, Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time-dependent domains,, Journal of Differential Equations, 254 (2013), 125.  doi: 10.1016/j.jde.2012.08.019.  Google Scholar

[8]

E. Feireisl, J. Neustupa and J. Stebel, Convergence of a Brinkman-type penalization for compressible fluid flows,, Journal of Differential Equations, 250 (2011), 596.  doi: 10.1016/j.jde.2010.09.031.  Google Scholar

[9]

J. Frehse, J. Málek and M. Steinhauer, On existence results for fluids with shear dependent viscosity-unsteady flows,, Partial Differential Equations, 406 (2000), 121.   Google Scholar

[10]

J. Frehse, J. Málek and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the lipschitz truncation method,, SIAM Journal on Mathematical Analysis, 34 (2003), 1064.  doi: 10.1137/S0036141002410988.  Google Scholar

[11]

O. A. Ladyzhenskaya, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems,, Trudy Mat. Inst. Steklov., 102 (1967), 85.   Google Scholar

[12]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Second English edition, (1969).   Google Scholar

[13]

O. A. Ladyzhenskaya, Initial-boundary problem for Navier-Stokes equations in domains with time-varying boundaries,, Zapiski Nauchnykh Seminarov LOMI, 11 (1968), 97.   Google Scholar

[14]

J.-L. Lions, Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires,, (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[15]

J. Málek and K. R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of its generalizations,, in Evolutionary equations. Vol. II, (2005), 371.   Google Scholar

[16]

M. Moubachir and J.-P. Zolésio, Moving Shape Analysis and Control, vol. 277,, Chapman & Hall/CRC, (2006).  doi: 10.1201/9781420003246.  Google Scholar

[17]

J. Neustupa, Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method,, Mathematical Methods in the Applied Sciences, 32 (2009), 653.  doi: 10.1002/mma.1059.  Google Scholar

[18]

P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations, Theory and Shape Optimization,, Springer-Verlag, (2012).  doi: 10.1007/978-3-0348-0367-0.  Google Scholar

[19]

K. Rajagopal, Mechanics of non-Newtonian fluids,, in Recent Developments in Theoretical Fluid Mechanics (Winter School, (1992), 129.   Google Scholar

[20]

W. Schowalter, Mechanics of Non-Newtonian Fluids,, Pergamon Press, (1978).   Google Scholar

[21]

T. Slawig, Distributed control for a class of non-Newtonian fluids,, Journal of Differential Equations, 219 (2005), 116.  doi: 10.1016/j.jde.2005.03.009.  Google Scholar

[22]

J. Sokołowski and J. Stebel, Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids,, Control and Cybernetics, 40 (2011), 1077.   Google Scholar

[23]

J. Sokołowski and J. Stebel, Shape sensitivity analysis of incompressible non-Newtonian fluids,, in System Modeling and Optimization, (2013), 427.   Google Scholar

[24]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis,, Springer Series in Computational Mathematics, (1992).   Google Scholar

[25]

C. Truesdell, W. Noll and S. Antman, The Non-linear Field Theories Of Mechanics,, Springer Verlag, (2004).  doi: 10.1007/978-3-662-10388-3.  Google Scholar

[26]

D. Wachsmuth and T. Roubíček, Optimal control of planar flow of incompressible non-Newtonian fluids,, Z. Anal. Anwend., 29 (2010), 351.  doi: 10.4171/ZAA/1412.  Google Scholar

show all references

References:
[1]

N. Arada, Regularity of flows and optimal control of shear-thinning fluids,, Nonlinear Analysis: Theory, 89 (2013), 81.  doi: 10.1016/j.na.2013.04.015.  Google Scholar

[2]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations,, Mem. Amer. Math. Soc., 181 (2006).  doi: 10.1090/memo/0852.  Google Scholar

[3]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization,, Second edition, (2011).  doi: 10.1137/1.9780898719826.  Google Scholar

[4]

M. C. Delfour and J. P. Zolésio, Oriented distance function and its evolution equation for initial sets with thin boundary,, SIAM Journal on Control and Optimization, 42 (2004), 2286.  doi: 10.1137/S0363012902411945.  Google Scholar

[5]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Annali della Scuola Normale Superiore di Pisa. Classe di scienze, 9 (2010), 1.   Google Scholar

[6]

R. Dziri and J.-P. Zolésio, Dynamical shape control in non-cylindrical navier-stokes equations,, Journal of Convex Analysis, 6 (1999), 293.   Google Scholar

[7]

E. Feireisl, O. Kreml, Š. Nečasová, J. Neustupa and J. Stebel, Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time-dependent domains,, Journal of Differential Equations, 254 (2013), 125.  doi: 10.1016/j.jde.2012.08.019.  Google Scholar

[8]

E. Feireisl, J. Neustupa and J. Stebel, Convergence of a Brinkman-type penalization for compressible fluid flows,, Journal of Differential Equations, 250 (2011), 596.  doi: 10.1016/j.jde.2010.09.031.  Google Scholar

[9]

J. Frehse, J. Málek and M. Steinhauer, On existence results for fluids with shear dependent viscosity-unsteady flows,, Partial Differential Equations, 406 (2000), 121.   Google Scholar

[10]

J. Frehse, J. Málek and M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the lipschitz truncation method,, SIAM Journal on Mathematical Analysis, 34 (2003), 1064.  doi: 10.1137/S0036141002410988.  Google Scholar

[11]

O. A. Ladyzhenskaya, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems,, Trudy Mat. Inst. Steklov., 102 (1967), 85.   Google Scholar

[12]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Second English edition, (1969).   Google Scholar

[13]

O. A. Ladyzhenskaya, Initial-boundary problem for Navier-Stokes equations in domains with time-varying boundaries,, Zapiski Nauchnykh Seminarov LOMI, 11 (1968), 97.   Google Scholar

[14]

J.-L. Lions, Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires,, (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[15]

J. Málek and K. R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of its generalizations,, in Evolutionary equations. Vol. II, (2005), 371.   Google Scholar

[16]

M. Moubachir and J.-P. Zolésio, Moving Shape Analysis and Control, vol. 277,, Chapman & Hall/CRC, (2006).  doi: 10.1201/9781420003246.  Google Scholar

[17]

J. Neustupa, Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method,, Mathematical Methods in the Applied Sciences, 32 (2009), 653.  doi: 10.1002/mma.1059.  Google Scholar

[18]

P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations, Theory and Shape Optimization,, Springer-Verlag, (2012).  doi: 10.1007/978-3-0348-0367-0.  Google Scholar

[19]

K. Rajagopal, Mechanics of non-Newtonian fluids,, in Recent Developments in Theoretical Fluid Mechanics (Winter School, (1992), 129.   Google Scholar

[20]

W. Schowalter, Mechanics of Non-Newtonian Fluids,, Pergamon Press, (1978).   Google Scholar

[21]

T. Slawig, Distributed control for a class of non-Newtonian fluids,, Journal of Differential Equations, 219 (2005), 116.  doi: 10.1016/j.jde.2005.03.009.  Google Scholar

[22]

J. Sokołowski and J. Stebel, Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids,, Control and Cybernetics, 40 (2011), 1077.   Google Scholar

[23]

J. Sokołowski and J. Stebel, Shape sensitivity analysis of incompressible non-Newtonian fluids,, in System Modeling and Optimization, (2013), 427.   Google Scholar

[24]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis,, Springer Series in Computational Mathematics, (1992).   Google Scholar

[25]

C. Truesdell, W. Noll and S. Antman, The Non-linear Field Theories Of Mechanics,, Springer Verlag, (2004).  doi: 10.1007/978-3-662-10388-3.  Google Scholar

[26]

D. Wachsmuth and T. Roubíček, Optimal control of planar flow of incompressible non-Newtonian fluids,, Z. Anal. Anwend., 29 (2010), 351.  doi: 10.4171/ZAA/1412.  Google Scholar

[1]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[2]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[3]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[4]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[5]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[6]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[7]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[8]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[9]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[10]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[11]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[12]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[13]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[14]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[15]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[16]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[17]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[18]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[19]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[20]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]