- Previous Article
- EECT Home
- This Issue
-
Next Article
Shape optimization for non-Newtonian fluids in time-dependent domains
Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping
1. | Department of Mathematics, NC State University, Raleigh, NC 27695 |
2. | Department of Mathematics, University of Nebraska-Lincoln, Avery Hall 239, Lincoln, NE 68588 |
3. | Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588 |
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Second edition, (2003).
|
[2] |
L. Bociu, P. Radu and D. Toundykov, Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping,, Evolution Equations and Control Theory, 2 (2013), 255.
doi: 10.3934/eect.2013.2.255. |
[3] |
T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems,, J. Functional Analysis, 8 (1971), 52.
doi: 10.1016/0022-1236(71)90018-8. |
[4] |
H. Hudzik, Intersections and algebraic sums of Musielak-Orlicz spaces,, Portugal. Math., 40 (1981), 287.
|
[5] |
M. A. Krasnosel$'$skiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces,, Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., (1961). Google Scholar |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Second edition, (2003).
|
[2] |
L. Bociu, P. Radu and D. Toundykov, Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping,, Evolution Equations and Control Theory, 2 (2013), 255.
doi: 10.3934/eect.2013.2.255. |
[3] |
T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems,, J. Functional Analysis, 8 (1971), 52.
doi: 10.1016/0022-1236(71)90018-8. |
[4] |
H. Hudzik, Intersections and algebraic sums of Musielak-Orlicz spaces,, Portugal. Math., 40 (1981), 287.
|
[5] |
M. A. Krasnosel$'$skiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces,, Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., (1961). Google Scholar |
[1] |
Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255 |
[2] |
Tomasz Dlotko, Tongtong Liang, Yejuan Wang. Critical and super-critical abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019238 |
[3] |
Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459 |
[4] |
Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307 |
[5] |
A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747 |
[6] |
Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921 |
[7] |
A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119 |
[8] |
Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351 |
[9] |
Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090 |
[10] |
Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377 |
[11] |
Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445 |
[12] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[13] |
Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179 |
[14] |
Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795 |
[15] |
Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078 |
[16] |
Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100 |
[17] |
Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022 |
[18] |
Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217 |
[19] |
Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 |
[20] |
Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443 |
2018 Impact Factor: 1.048
Tools
Metrics
Other articles
by authors
[Back to Top]