September  2014, 3(3): 355-361. doi: 10.3934/eect.2014.3.355

First-order inverse evolution equations

1. 

Department of Mathematics, The University of Jordan, Amman

2. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

Received  May 2013 Revised  April 2014 Published  August 2014

We are concerned with an inverse problem for first order linear evolution equations. We indicate sufficient conditions for existence and uniqueness of a solution to these problems. All the results apply well to inverse problems for equations from mathematical physics. Indeed, as a possible application of the abstract theorems, some examples of partial differential equations are given.
Citation: Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations & Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355
References:
[1]

M. Al Horani, An identification problem for some degenerate differential equations,, Matematiche (Catania), 57 (2002), 217.   Google Scholar

[2]

M. Al Horani, Projection method for solving degenerate first-order identification problem,, J. Math. Anal. Appl., 364 (2010), 204.  doi: 10.1016/j.jmaa.2009.10.033.  Google Scholar

[3]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, Journal of Optimization Theory and Applications, 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[4]

M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces,, Differential Equations, (): 1.  doi: 10.1201/9781420011135.ch1.  Google Scholar

[5]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, Preprint., ().   Google Scholar

[6]

W. Desch and W. Schappacher, On relatively bounded perturbations of linear $C_0$-semigroups,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 327.   Google Scholar

[7]

N. Dunford and T. Schwarz, Linear Operators, I,, Wiley (Interscience), (1958).   Google Scholar

[8]

K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Math., (2000).   Google Scholar

[9]

A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I,, Dynamics of Continuous, 12 (2005), 303.   Google Scholar

[10]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc., (1999).   Google Scholar

[11]

A. Favini and S. Romanelli, Analicity semigroups on $C[0,1]$ generated by some classes of second order differential equations,, Semigroup Forum, 56 (1998), 362.   Google Scholar

[12]

G. Greiner, Spectral properties and asymptotic behavior of the linear transport equation,, Math. Zeit., 185 (1984), 167.  doi: 10.1007/BF01181687.  Google Scholar

[13]

A. Lorenzi, An Introduction to Identification Problems Via Functional Analysis,, VSP, (2001).  doi: 10.1515/9783110940923.  Google Scholar

[14]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, $1^{ist}$ ed, (1995).   Google Scholar

[15]

I. Prilepko, G. Orlovsky and A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker. Inc., (2000).   Google Scholar

[16]

E. Sinestrari, Wave equation with memory,, Discrete Contin. Dynam. Systems, 5 (1999), 881.  doi: 10.3934/dcds.1999.5.881.  Google Scholar

[17]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

show all references

References:
[1]

M. Al Horani, An identification problem for some degenerate differential equations,, Matematiche (Catania), 57 (2002), 217.   Google Scholar

[2]

M. Al Horani, Projection method for solving degenerate first-order identification problem,, J. Math. Anal. Appl., 364 (2010), 204.  doi: 10.1016/j.jmaa.2009.10.033.  Google Scholar

[3]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, Journal of Optimization Theory and Applications, 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[4]

M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces,, Differential Equations, (): 1.  doi: 10.1201/9781420011135.ch1.  Google Scholar

[5]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, Preprint., ().   Google Scholar

[6]

W. Desch and W. Schappacher, On relatively bounded perturbations of linear $C_0$-semigroups,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 327.   Google Scholar

[7]

N. Dunford and T. Schwarz, Linear Operators, I,, Wiley (Interscience), (1958).   Google Scholar

[8]

K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Math., (2000).   Google Scholar

[9]

A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I,, Dynamics of Continuous, 12 (2005), 303.   Google Scholar

[10]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc., (1999).   Google Scholar

[11]

A. Favini and S. Romanelli, Analicity semigroups on $C[0,1]$ generated by some classes of second order differential equations,, Semigroup Forum, 56 (1998), 362.   Google Scholar

[12]

G. Greiner, Spectral properties and asymptotic behavior of the linear transport equation,, Math. Zeit., 185 (1984), 167.  doi: 10.1007/BF01181687.  Google Scholar

[13]

A. Lorenzi, An Introduction to Identification Problems Via Functional Analysis,, VSP, (2001).  doi: 10.1515/9783110940923.  Google Scholar

[14]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, $1^{ist}$ ed, (1995).   Google Scholar

[15]

I. Prilepko, G. Orlovsky and A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker. Inc., (2000).   Google Scholar

[16]

E. Sinestrari, Wave equation with memory,, Discrete Contin. Dynam. Systems, 5 (1999), 881.  doi: 10.3934/dcds.1999.5.881.  Google Scholar

[17]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[1]

Viorel Nitica, Andrei Török. On a semigroup problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2365-2377. doi: 10.3934/dcdss.2019148

[2]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[3]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[4]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[5]

Rainer Steinwandt, Adriana Suárez Corona. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Advances in Mathematics of Communications, 2011, 5 (1) : 87-92. doi: 10.3934/amc.2011.5.87

[6]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[7]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[8]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020121

[9]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[10]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020002

[11]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[12]

Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861

[13]

Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial & Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945

[14]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[15]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[16]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[17]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[18]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

[19]

J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293

[20]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]