September  2014, 3(3): 363-372. doi: 10.3934/eect.2014.3.363

Lower semicontinuity for polyconvex integrals without coercivity assumptions

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza - Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy, Italy

Received  May 2013 Revised  November 2013 Published  August 2014

We prove a lower semicontinuity theorem for a polyconvex functional of integral form, related to maps $u:\Omega \subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ in $W^{1,n}(\Omega ;\mathbb{R}^{m})$ with $n\geq m\geq 2$, with respect to the weak $W^{1,p}$-convergence for $p>m-1$, without assuming any coercivity condition.
Citation: Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations & Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363
References:
[1]

E. Acerbi, G. Buttazzo and N. Fusco, Semicontinuity and relaxation for integrals depending on vector valued functions,, J. Math. Pures Appl., 62 (1983), 371.   Google Scholar

[2]

E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals,, Calc. Var. Partial Differential Equations, 2 (1994), 329.  doi: 10.1007/BF01235534.  Google Scholar

[3]

M. Amar, V. De Cicco, P. Marcellini and E. Mascolo, Weak lower semicontinuity for non coercive polyconvex integrals,, Adv. Calc. Var., I (2008), 171.  doi: 10.1515/ACV.2008.006.  Google Scholar

[4]

M. Amar, V. De Cicco and N. Fusco, Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands,, ESAIM: Control, 14 (2008), 456.  doi: 10.1051/cocv:2007061.  Google Scholar

[5]

M. Amar, V. De Cicco and N. Fusco, Lower semicontinuity results for free discontinuity energies,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 707.  doi: 10.1142/S0218202510004416.  Google Scholar

[6]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity,, Arch. Ration. Mech. Anal., 63 (1977), 337.  doi: 10.1007/BF00279992.  Google Scholar

[7]

P. Celada and G. Dal Maso, Further remarks on the lower semicontinuity of polyconvex integrals,, Ann. Inst. H. Poincaré, 11 (1994), 661.   Google Scholar

[8]

P. G. Ciarlet, Three Dimensional Elasticity,, Vol. 1, (1988).   Google Scholar

[9]

B. Dacorogna, Direct Methods in the Calculus of Variations,, Appl. Math. Sci., (1989).  doi: 10.1007/978-3-642-51440-1.  Google Scholar

[10]

B. Dacorogna and P. Marcellini, Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants,, C.R. Math. Acad. Sci. Paris, 311 (1990), 393.   Google Scholar

[11]

G. Dal Maso, Integral representation on $BV(\Omega)$ of $\Gamma$-limits of variational integrals,, Manuscripta Math., 30 (1980), 387.  doi: 10.1007/BF01301259.  Google Scholar

[12]

G. Dal Maso and C. Sbordone, Weak lower semicontinuity of polyconvex integrals: a borderline case,, Math. Z., 218 (1995), 603.  doi: 10.1007/BF02571927.  Google Scholar

[13]

E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functions,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 74 (1983), 274.   Google Scholar

[14]

M. Fabrizio, Sulla convessità dei potenziali termodinamici per materiali con memoria,, Ann. Mat. Pura e Appl., 101 (1974), 33.  doi: 10.1007/BF02417097.  Google Scholar

[15]

M. Focardi, N. Fusco, C. Leone, P. Marcellini, E. Mascolo and A. Verde, Weak lower semicontinuity for polyconvex integrals in the limit case,, Calc. Var. Partial Differential Equations, (2013), 1.   Google Scholar

[16]

I. Fonseca and G. Leoni, Some remarks on lower semicontinuity,, Indiana Univ. Math. J., 49 (2000), 617.  doi: 10.1512/iumj.2000.49.1791.  Google Scholar

[17]

I. Fonseca and G. Leoni, On lower semicontinuity and relaxation,, Proc. Royal Soc. Edinb., 131 (2001), 519.  doi: 10.1017/S0308210500000998.  Google Scholar

[18]

N. Fusco, M. Gori and F. Maggi, A remark on Serrin's Theorem,, NoDEA Nonlinear Differential Equations Appl., 28 (2007), 427.   Google Scholar

[19]

N. Fusco and J. E. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals,, Manuscripta Math., 87 (1995), 35.  doi: 10.1007/BF02570460.  Google Scholar

[20]

W. Gangbo, On the weak lower semicontinuty of energies with polyconvex integrands,, J. Math. Pures Appl., 73 (1994), 455.   Google Scholar

[21]

J. Maly, Weak lower semicontinuity of polyconvex integrals,, Proc. Edinb. Math. Soc., 123 (1993), 681.  doi: 10.1017/S0308210500030900.  Google Scholar

[22]

P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals,, Manuscripta Math., 51 (1985), 1.  doi: 10.1007/BF01168345.  Google Scholar

[23]

P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 391.   Google Scholar

[24]

C. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer-Verlag, (1966).   Google Scholar

[25]

J. Serrin, On the definition and properties of certain variational integrals,, Trans. Amer. Math. Soc., 101 (1961), 139.  doi: 10.1090/S0002-9947-1961-0138018-9.  Google Scholar

show all references

References:
[1]

E. Acerbi, G. Buttazzo and N. Fusco, Semicontinuity and relaxation for integrals depending on vector valued functions,, J. Math. Pures Appl., 62 (1983), 371.   Google Scholar

[2]

E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals,, Calc. Var. Partial Differential Equations, 2 (1994), 329.  doi: 10.1007/BF01235534.  Google Scholar

[3]

M. Amar, V. De Cicco, P. Marcellini and E. Mascolo, Weak lower semicontinuity for non coercive polyconvex integrals,, Adv. Calc. Var., I (2008), 171.  doi: 10.1515/ACV.2008.006.  Google Scholar

[4]

M. Amar, V. De Cicco and N. Fusco, Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands,, ESAIM: Control, 14 (2008), 456.  doi: 10.1051/cocv:2007061.  Google Scholar

[5]

M. Amar, V. De Cicco and N. Fusco, Lower semicontinuity results for free discontinuity energies,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 707.  doi: 10.1142/S0218202510004416.  Google Scholar

[6]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity,, Arch. Ration. Mech. Anal., 63 (1977), 337.  doi: 10.1007/BF00279992.  Google Scholar

[7]

P. Celada and G. Dal Maso, Further remarks on the lower semicontinuity of polyconvex integrals,, Ann. Inst. H. Poincaré, 11 (1994), 661.   Google Scholar

[8]

P. G. Ciarlet, Three Dimensional Elasticity,, Vol. 1, (1988).   Google Scholar

[9]

B. Dacorogna, Direct Methods in the Calculus of Variations,, Appl. Math. Sci., (1989).  doi: 10.1007/978-3-642-51440-1.  Google Scholar

[10]

B. Dacorogna and P. Marcellini, Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants,, C.R. Math. Acad. Sci. Paris, 311 (1990), 393.   Google Scholar

[11]

G. Dal Maso, Integral representation on $BV(\Omega)$ of $\Gamma$-limits of variational integrals,, Manuscripta Math., 30 (1980), 387.  doi: 10.1007/BF01301259.  Google Scholar

[12]

G. Dal Maso and C. Sbordone, Weak lower semicontinuity of polyconvex integrals: a borderline case,, Math. Z., 218 (1995), 603.  doi: 10.1007/BF02571927.  Google Scholar

[13]

E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functions,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 74 (1983), 274.   Google Scholar

[14]

M. Fabrizio, Sulla convessità dei potenziali termodinamici per materiali con memoria,, Ann. Mat. Pura e Appl., 101 (1974), 33.  doi: 10.1007/BF02417097.  Google Scholar

[15]

M. Focardi, N. Fusco, C. Leone, P. Marcellini, E. Mascolo and A. Verde, Weak lower semicontinuity for polyconvex integrals in the limit case,, Calc. Var. Partial Differential Equations, (2013), 1.   Google Scholar

[16]

I. Fonseca and G. Leoni, Some remarks on lower semicontinuity,, Indiana Univ. Math. J., 49 (2000), 617.  doi: 10.1512/iumj.2000.49.1791.  Google Scholar

[17]

I. Fonseca and G. Leoni, On lower semicontinuity and relaxation,, Proc. Royal Soc. Edinb., 131 (2001), 519.  doi: 10.1017/S0308210500000998.  Google Scholar

[18]

N. Fusco, M. Gori and F. Maggi, A remark on Serrin's Theorem,, NoDEA Nonlinear Differential Equations Appl., 28 (2007), 427.   Google Scholar

[19]

N. Fusco and J. E. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals,, Manuscripta Math., 87 (1995), 35.  doi: 10.1007/BF02570460.  Google Scholar

[20]

W. Gangbo, On the weak lower semicontinuty of energies with polyconvex integrands,, J. Math. Pures Appl., 73 (1994), 455.   Google Scholar

[21]

J. Maly, Weak lower semicontinuity of polyconvex integrals,, Proc. Edinb. Math. Soc., 123 (1993), 681.  doi: 10.1017/S0308210500030900.  Google Scholar

[22]

P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals,, Manuscripta Math., 51 (1985), 1.  doi: 10.1007/BF01168345.  Google Scholar

[23]

P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 391.   Google Scholar

[24]

C. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer-Verlag, (1966).   Google Scholar

[25]

J. Serrin, On the definition and properties of certain variational integrals,, Trans. Amer. Math. Soc., 101 (1961), 139.  doi: 10.1090/S0002-9947-1961-0138018-9.  Google Scholar

[1]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[2]

Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure & Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023

[3]

Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020086

[4]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[5]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018174

[6]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[7]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[8]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[9]

Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112

[10]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[11]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[12]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[13]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[14]

Carlangelo Liverani. Fredholm determinants, Anosov maps and Ruelle resonances. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1203-1215. doi: 10.3934/dcds.2005.13.1203

[15]

Zsolt Páles, Vera Zeidan. $V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 623-646. doi: 10.3934/dcds.2011.29.623

[16]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[17]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[18]

M. M. Rao. Integration with vector valued measures. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5429-5440. doi: 10.3934/dcds.2013.33.5429

[19]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[20]

Shiliang Weng, Xiang Zhang. Integrability of vector fields versus inverse Jacobian multipliers and normalizers. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6539-6555. doi: 10.3934/dcds.2016083

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]