September  2014, 3(3): 373-397. doi: 10.3934/eect.2014.3.373

On the viscoelastic coupled suspension bridge

1. 

Dipartimento di Matematica, Università degli studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy

2. 

DICATAM, Università degli studi di Brescia, Via D.Valotti 9, 25133 Brescia, Italy

Received  August 2013 Revised  February 2014 Published  August 2014

In this paper we discuss the asymptotic behavior of a doubly nonlinear problem describing the vibrations of a coupled suspension bridge. The single-span road-bed is modeled as an extensible viscoelastic beam which is simply supported at the ends. The main cable is modeled by a viscoelastic string and is connected to the road-bed by a distributed system of one-sided elastic springs. A constant axial force $p$ is applied at one end of the deck, and time-independent vertical loads are allowed to act both on the road-bed and on the suspension cable. For this general model we obtain original results, including the existence of a regular global attractor for all $p\in\mathbb{R}$.
Citation: Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations and Control Theory, 2014, 3 (3) : 373-397. doi: 10.3934/eect.2014.3.373
References:
[1]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Theory, ASCE J. Eng. Mech., 109 (1983), 313-329. doi: 10.1061/(ASCE)0733-9399(1983)109:1(313).

[2]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Application, ASCE J. Eng. Mech., 109 (1983), 330-345. doi: 10.1061/(ASCE)0733-9399(1983)109:1(330).

[3]

N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges, SIAM J. Appl. Math., 58 (1998), 853-874. doi: 10.1137/S0036139996308698.

[4]

Y. An, Nonlinear perturbations of a coupled system of steady state suspension bridge equations, Nonlinear Analysis, 51 (2002), 1285-1292. doi: 10.1016/S0362-546X(01)00899-9.

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[6]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. doi: 10.1016/0022-247X(73)90121-2.

[7]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418. doi: 10.1016/0022-0396(73)90056-9.

[8]

I. Bochicchio, C. Giorgi and E. Vuk, Steady states analysis and exponential stability of an extensible thermoelastic system, Comunication to SIMAI Congress, 3 (2009), 232-243. doi: 10.1685/CSC09232.

[9]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term damped dynamics of the extensible suspension bridge, Int. J. Differ. Equ., 2010 (2010), 19 pp. doi: 10.1155/2010/383420.

[10]

I. Bochicchio and E. Vuk, Buckling and longterm dynamics of a nonlinear model for the extensible beam, Math. Comput. Modelling, 51 (2010), 833-846. doi: 10.1016/j.mcm.2009.10.010.

[11]

I. Bochicchio and E. Vuk, Longtime behavior for oscillations of an extensible viscoelastic beam with elastic external supply, Int. J. Pure Appl. Math., 58 (2010), 61-76. http://ijpam.eu/contents/2010-58-1/8/8.pdf.

[12]

I. Bochicchio, C. Giorgi and E. Vuk, On some nonlinear models for suspension bridges, in Evolution Equations and Materials with Memory, (eds. D.Andreucci, S.Carillo, M. Fabrizio, P.Loreti and D.Sforza), Sapienza Università, (2012), 1-18.

[13]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term dynamics of the coupled suspension bridge system, Math. Models Methods Appl. Sci., 22 (2012), (22 pages). doi: 10.1142/S0218202512500212.

[14]

I. Bochicchio, C. Giorgi and E. Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations, J. Math. Anal. Appl., 402 (2013), 319-333. doi: 10.1016/j.jmaa.2013.01.036.

[15]

I. Bochicchio, C. Giorgi and E Vuk, Long-term dynamics of a viscoelatic suspension bridge, Meccanica, 49 (2014), 2139-2151. doi: 10.1007/s11012-014-9887-z.

[16]

Q. H. Choi and T. Jung, A nonlinear suspension bridge equation with nonconstant load, Nonlinear Anal., 35 (1999), 649-668. doi: 10.1016/S0362-546X(97)00616-0.

[17]

M. Conti, S. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2008), 21-45. doi: 10.1142/S0218202508002590.

[18]

M. Conti and and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720. doi: 10.3934/cpaa.2005.4.705.

[19]

M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-216. doi: 10.1512/iumj.2006.55.2661.

[20]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060. doi: 10.3934/dcds.2009.25.1041.

[21]

M. Coti Zelati, C. Giorgi and V. Pata, Steady states of the hinged extensible beam with external load, Math. Models Methods Appl. Sci., 20 (2010), 43-58. doi: 10.1142/S0218202510004143.

[22]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308. doi: 0.1007/BF00251609.

[23]

P. Drábek, G. Holubová, A. Matas and P. Nečesal, Nonlinear models of suspension bridges: Discussion of the results, Applications of Mathematics, 48 (2003), 497-514. doi: 10.1023/B:APOM.0000024489.96314.7f.

[24]

A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity, North-Holland, Amsterdam, 1994.

[25]

C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam, Nonlinearity, 21 (2008), 713-733. doi: 10.1088/0951-7715/21/4/004.

[26]

C. Giorgi and E. Vuk, Steady-state solutions for a suspension bridge with intermediate supports, Bound. Value Probl., 2013 (2013), 204. doi: 10.1186/1687-2770-2013-204.

[27]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of a large-scale nonlinear oscillations in suspension bridge, Z. Angew. Math. Phys., 40 (1989), 171-200. doi: 10.1007/BF00944997.

[28]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl., Birkhauser, Boston, (eds. A. Lorenzi and B. Ruf), , 50 (2002), 155-178.

[29]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., (). 

[30]

G. Holubová and A. Matas, Initial-boundary problem for the nonlinear string-beam system, J. Math. Anal. Appl., 288 (2003), 784-802. doi: 10.1016/j.jmaa.2003.09.028.

[31]

W. Kanok-Nukulchai, P. K. A. Yiu and D. M. Brotton, Mathematical modelling of cable-stayed bridges, Structural Engineering International, 2 (1992), 108-113. doi: 10.2749/101686692780616030.

[32]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578. doi: 10.1137/1032120.

[33]

Q. Ma and C. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differential Equations, 246 (2009), 3755-3775. doi: 10.1016/j.jde.2009.02.022.

[34]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167-177. doi: 10.1007/BF00251232.

[35]

V. Pata, Exponential stability in linear viscoelasticity, Quart. Applied Math., 64 (2006), 499-513. doi: 10.1007/s00032-009-0098-3.

[36]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

[37]

E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column, Quart. Appl. Math., 29 (1971), 245-260.

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer, ().  doi: 10.1007/978-1-4612-0645-3.

[39]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

[40]

C. Zhong, Q. Ma and C. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Analysis, 67 (2007), 442-454. doi: 10.1016/j.na.2006.05.018.

show all references

References:
[1]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Theory, ASCE J. Eng. Mech., 109 (1983), 313-329. doi: 10.1061/(ASCE)0733-9399(1983)109:1(313).

[2]

A. M. Abdel-Ghaffar and L. I. Rubin, Non linear free vibrations of suspension bridges: Application, ASCE J. Eng. Mech., 109 (1983), 330-345. doi: 10.1061/(ASCE)0733-9399(1983)109:1(330).

[3]

N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges, SIAM J. Appl. Math., 58 (1998), 853-874. doi: 10.1137/S0036139996308698.

[4]

Y. An, Nonlinear perturbations of a coupled system of steady state suspension bridge equations, Nonlinear Analysis, 51 (2002), 1285-1292. doi: 10.1016/S0362-546X(01)00899-9.

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[6]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. doi: 10.1016/0022-247X(73)90121-2.

[7]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418. doi: 10.1016/0022-0396(73)90056-9.

[8]

I. Bochicchio, C. Giorgi and E. Vuk, Steady states analysis and exponential stability of an extensible thermoelastic system, Comunication to SIMAI Congress, 3 (2009), 232-243. doi: 10.1685/CSC09232.

[9]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term damped dynamics of the extensible suspension bridge, Int. J. Differ. Equ., 2010 (2010), 19 pp. doi: 10.1155/2010/383420.

[10]

I. Bochicchio and E. Vuk, Buckling and longterm dynamics of a nonlinear model for the extensible beam, Math. Comput. Modelling, 51 (2010), 833-846. doi: 10.1016/j.mcm.2009.10.010.

[11]

I. Bochicchio and E. Vuk, Longtime behavior for oscillations of an extensible viscoelastic beam with elastic external supply, Int. J. Pure Appl. Math., 58 (2010), 61-76. http://ijpam.eu/contents/2010-58-1/8/8.pdf.

[12]

I. Bochicchio, C. Giorgi and E. Vuk, On some nonlinear models for suspension bridges, in Evolution Equations and Materials with Memory, (eds. D.Andreucci, S.Carillo, M. Fabrizio, P.Loreti and D.Sforza), Sapienza Università, (2012), 1-18.

[13]

I. Bochicchio, C. Giorgi and E. Vuk, Long-term dynamics of the coupled suspension bridge system, Math. Models Methods Appl. Sci., 22 (2012), (22 pages). doi: 10.1142/S0218202512500212.

[14]

I. Bochicchio, C. Giorgi and E. Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations, J. Math. Anal. Appl., 402 (2013), 319-333. doi: 10.1016/j.jmaa.2013.01.036.

[15]

I. Bochicchio, C. Giorgi and E Vuk, Long-term dynamics of a viscoelatic suspension bridge, Meccanica, 49 (2014), 2139-2151. doi: 10.1007/s11012-014-9887-z.

[16]

Q. H. Choi and T. Jung, A nonlinear suspension bridge equation with nonconstant load, Nonlinear Anal., 35 (1999), 649-668. doi: 10.1016/S0362-546X(97)00616-0.

[17]

M. Conti, S. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2008), 21-45. doi: 10.1142/S0218202508002590.

[18]

M. Conti and and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720. doi: 10.3934/cpaa.2005.4.705.

[19]

M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-216. doi: 10.1512/iumj.2006.55.2661.

[20]

M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060. doi: 10.3934/dcds.2009.25.1041.

[21]

M. Coti Zelati, C. Giorgi and V. Pata, Steady states of the hinged extensible beam with external load, Math. Models Methods Appl. Sci., 20 (2010), 43-58. doi: 10.1142/S0218202510004143.

[22]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308. doi: 0.1007/BF00251609.

[23]

P. Drábek, G. Holubová, A. Matas and P. Nečesal, Nonlinear models of suspension bridges: Discussion of the results, Applications of Mathematics, 48 (2003), 497-514. doi: 10.1023/B:APOM.0000024489.96314.7f.

[24]

A. D. Drozdov and V. B. Kolmanovskii, Stability in Viscoelasticity, North-Holland, Amsterdam, 1994.

[25]

C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam, Nonlinearity, 21 (2008), 713-733. doi: 10.1088/0951-7715/21/4/004.

[26]

C. Giorgi and E. Vuk, Steady-state solutions for a suspension bridge with intermediate supports, Bound. Value Probl., 2013 (2013), 204. doi: 10.1186/1687-2770-2013-204.

[27]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of a large-scale nonlinear oscillations in suspension bridge, Z. Angew. Math. Phys., 40 (1989), 171-200. doi: 10.1007/BF00944997.

[28]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl., Birkhauser, Boston, (eds. A. Lorenzi and B. Ruf), , 50 (2002), 155-178.

[29]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., (). 

[30]

G. Holubová and A. Matas, Initial-boundary problem for the nonlinear string-beam system, J. Math. Anal. Appl., 288 (2003), 784-802. doi: 10.1016/j.jmaa.2003.09.028.

[31]

W. Kanok-Nukulchai, P. K. A. Yiu and D. M. Brotton, Mathematical modelling of cable-stayed bridges, Structural Engineering International, 2 (1992), 108-113. doi: 10.2749/101686692780616030.

[32]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578. doi: 10.1137/1032120.

[33]

Q. Ma and C. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differential Equations, 246 (2009), 3755-3775. doi: 10.1016/j.jde.2009.02.022.

[34]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167-177. doi: 10.1007/BF00251232.

[35]

V. Pata, Exponential stability in linear viscoelasticity, Quart. Applied Math., 64 (2006), 499-513. doi: 10.1007/s00032-009-0098-3.

[36]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

[37]

E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column, Quart. Appl. Math., 29 (1971), 245-260.

[38]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer, ().  doi: 10.1007/978-1-4612-0645-3.

[39]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.

[40]

C. Zhong, Q. Ma and C. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Analysis, 67 (2007), 442-454. doi: 10.1016/j.na.2006.05.018.

[1]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[2]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[3]

Luciano Pandolfi. Traction, deformation and velocity of deformation in a viscoelastic string. Evolution Equations and Control Theory, 2013, 2 (3) : 471-493. doi: 10.3934/eect.2013.2.471

[4]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[5]

Quang-Minh Tran, Hong-Danh Pham. Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4521-4550. doi: 10.3934/dcdss.2021135

[6]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[7]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[8]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021318

[9]

Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018

[10]

Ammar Khemmoudj, Imane Djaidja. General decay for a viscoelastic rotating Euler-Bernoulli beam. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3531-3557. doi: 10.3934/cpaa.2020154

[11]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[12]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[13]

Jorge A. Esquivel-Avila. Nonexistence of global solutions for a class of viscoelastic wave equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4213-4230. doi: 10.3934/dcdss.2021134

[14]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[15]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

[16]

Alfredo Lorenzi, Vladimir G. Romanov. Recovering two Lamé kernels in a viscoelastic system. Inverse Problems and Imaging, 2011, 5 (2) : 431-464. doi: 10.3934/ipi.2011.5.431

[17]

Abderrahmane Youkana, Salim A. Messaoudi. General and optimal decay for a quasilinear parabolic viscoelastic system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1307-1316. doi: 10.3934/dcdss.2021129

[18]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations and Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[19]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[20]

Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1165-1181. doi: 10.3934/dcdss.2021089

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]