September  2014, 3(3): 411-427. doi: 10.3934/eect.2014.3.411

Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials

1. 

Dipartimento di Matematica e Informatica, Università di Firenze, viale Morgagni 67/a, I-50134 Firenze, Italy

2. 

Dipartimento di Matematica e Fisica "N.Tartaglia", Università Cattolica del Sacro Cuore, Via dei Musei 41, I-25121 Brescia, Italy

Received  April 2013 Revised  January 2014 Published  August 2014

We address the thermal control of the quasi-static evolution of a polycrystalline shape memory alloy specimen. The thermomechanical evolution of the body is described by means of an extension of the phenomenological Souza-Auricchio model [6,7,8,57] accounting also for permanent inelastic effects [9,11,27]. By assuming to be able to control the temperature of the body in time we determine the corresponding quasi-static evolution in the energetic sense. In a similar way as in [28], using results by Rindler [49,50] we prove the existence of optimal controls for a suitably large class of cost functionals.
Citation: Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411
References:
[1]

T. Aiki and N. Kenmochi, Some models for shape memory alloys,, Mathematical aspects of modelling structure formation phenomena, 17 (2002), 144.   Google Scholar

[2]

M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys,, Contin. Mech. Thermodyn., 15 (2003), 463.  doi: 10.1007/s00161-003-0127-3.  Google Scholar

[3]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys,, Preprint IMATI-CNR 3PV13/3/0, (2013).   Google Scholar

[4]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys,, GAMM-Mitt., 34 (2011), 90.  doi: 10.1002/gamm.201110014.  Google Scholar

[5]

F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials,, Math. Models Meth. Appl. Sci., 18 (2008), 125.  doi: 10.1142/S0218202508002632.  Google Scholar

[6]

F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations,, Internat. J. Numer. Methods Engrg., 55 (2002), 1255.  doi: 10.1002/nme.619.  Google Scholar

[7]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems,, Internat. J. Numer. Meth. Engrg., 61 (2004), 807.  doi: 10.1002/nme.1086.  Google Scholar

[8]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications,, Internat. J. Numer. Meth. Engrg., 61 (2004), 716.  doi: 10.1002/nme.1087.  Google Scholar

[9]

F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with permanent inelasticity,, Int. J. Plasticity, 23 (2007), 207.  doi: 10.1016/j.ijplas.2006.02.012.  Google Scholar

[10]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631.  doi: 10.1016/j.cma.2009.01.019.  Google Scholar

[11]

N. Barrera, P. Biscari and M. F. Urbano, Macroscopic modeling of functional fatigue in shape memory alloys,, Eur. J. Mech. A/Solids, ().   Google Scholar

[12]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion,, Math. Modelling Numer. Anal., 45 (2011), 477.  doi: 10.1051/m2an/2010063.  Google Scholar

[13]

B. Benesova, M. Frost and P. Sedlak, A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations,, Preprint NCMM/2013/17, ().   Google Scholar

[14]

A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis,, Math. Models Meth. Appl. Sci., 21 (2011), 1043.  doi: 10.1142/S0218202511005246.  Google Scholar

[15]

A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys,, Preprint IMATI-CNR, (2010).   Google Scholar

[16]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Cont. Dyn. S. - Series S, 6 (2013), 293.   Google Scholar

[17]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginburg-Landau model,, Physica D, 239 (2010), 95.  doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[18]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, Math Studies, (1973).   Google Scholar

[19]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Applied Mathematical Sciences, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[20]

M. Brokate and J. Sprekels, Optimal control of shape memory alloys with solid-solid phase transitions,, in Emerging applications in free boundary problems (Montreal, (1990), 208.   Google Scholar

[21]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature,, Numer. Funct. Anal. Optim., 19 (1998), 489.  doi: 10.1080/01630569808816840.  Google Scholar

[22]

P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermodynamical evolution of shape memory alloys,, Nonlinear Anal., 18 (1992), 873.  doi: 10.1016/0362-546X(92)90228-7.  Google Scholar

[23]

T. W. Duerig and A. R. Pelton editors, SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference,, ASM International, (2003).   Google Scholar

[24]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B: Condensed Matter, 407 (2012), 1415.  doi: 10.1016/j.physb.2011.10.017.  Google Scholar

[25]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Comm. Pure Appl. Anal., 12 (2013), 2973.  doi: 10.3934/cpaa.2013.12.2973.  Google Scholar

[26]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate,, Discrete Cont. Dyn. S. Series B, 19 (2014).   Google Scholar

[27]

M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials,, Netw. Heterog. Media, 6 (2011), 145.  doi: 10.3934/nhm.2011.6.145.  Google Scholar

[28]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys,, Discrete Cont. Dyn. S. - Series S, 6 (2013), 369.   Google Scholar

[29]

V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials,, Comput. Mech., 44 (2009), 405.  doi: 10.1007/s00466-009-0381-8.  Google Scholar

[30]

V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain,, Internat. J. Numer. Methods Engrg., 81 (2010), 761.   Google Scholar

[31]

F. Falk, Martensitic domain boundaries in shape-memory alloys as solitary waves,, J. Phys. C4 Suppl., 12 (1982), 3.   Google Scholar

[32]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys,, J. Phys. Condens. Matter, 2 (1990), 61.  doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[33]

M. Frémond, Matériaux à mémoire de forme,, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239.   Google Scholar

[34]

S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys,, Contin. Mech. Thermodyn., 24 (2012), 63.  doi: 10.1007/s00161-011-0221-x.  Google Scholar

[35]

K.-H. Hoffmann, M. Niezgódka and S. Zheng, Existence and uniqueness to an extended model of the dynamical developments in shape memory alloys,, Nonlinear Anal., 15 (1990), 977.  doi: 10.1016/0362-546X(90)90079-V.  Google Scholar

[36]

K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements,, Adv. Math. Sci. Appl., 7 (1997), 427.   Google Scholar

[37]

K.-H. Hoffmann and A. Z. Ochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements,, Math. Methods Appl. Sci., 21 (1998), 589.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<589::AID-MMA904>3.0.CO;2-D.  Google Scholar

[38]

O. Klein, Stability and uniqueness results for a numerical appproximation of the thermomechanical phase transitions in shape memory alloys,, Adv. in Math. Sci. and Appl., 5 (1995), 91.   Google Scholar

[39]

P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension,, M2AN Math. Model. Numer. Anal., 44 (2010), 1239.  doi: 10.1051/m2an/2010024.  Google Scholar

[40]

P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires,, Math. Mech. Solids, 16 (2011), 349.  doi: 10.1177/1081286510386935.  Google Scholar

[41]

G. A. Maugin, The Thermomechanics of Plasticity and Fracture,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (1992).  doi: 10.1017/CBO9781139172400.  Google Scholar

[42]

A. Mielke, Evolution of rate-independent systems,, in Handbook of Differential Equations, 2 (2005), 461.   Google Scholar

[43]

A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys,, SIAM J. Math. Anal., 41 (2009), 1388.  doi: 10.1137/080726215.  Google Scholar

[44]

A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error estimates for discretizations of a rate-independent variational inequality,, SIAM J. Numer. Anal., 48 (2010), 1625.  doi: 10.1137/090750238.  Google Scholar

[45]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys,, Adv. Math. Sci. Appl., 17 (2007), 667.   Google Scholar

[46]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA, 11 (2004), 151.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[47]

L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys,, Preprint WIAS, (2011).   Google Scholar

[48]

I. Pawłow, Three-dimensional model of thermomechanical evolution of shape memory materials,, Control Cybernet., 29 (2000), 341.   Google Scholar

[49]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes,, SIAM J. Control Optim., 47 (2008), 2773.  doi: 10.1137/080718711.  Google Scholar

[50]

F. Rindler, Approximation of rate-independent optimal control problems,, SIAM J. Numer. Anal., 47 (2009), 3884.  doi: 10.1137/080744050.  Google Scholar

[51]

R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity,, Quaderno 05/2012 del Seminario Matematico di Brescia, (2012), 1.   Google Scholar

[52]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains,, SIAM J. Math. Anal., 42 (2010), 256.  doi: 10.1137/080729992.  Google Scholar

[53]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current,, Zeit. angew. Math. Phys., 61 (2010), 1.  doi: 10.1007/s00033-009-0007-1.  Google Scholar

[54]

T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis,, Arch. Rat. Mech. Anal., ().  doi: 10.1007/s00205-013-0648-2.  Google Scholar

[55]

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys,, Smart Mater. Struct., 16 (2007), 1751.  doi: 10.1088/0964-1726/16/5/030.  Google Scholar

[56]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys,, Math. Methods Appl. Sci., 17 (1994), 943.  doi: 10.1002/mma.1670171204.  Google Scholar

[57]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations,, Eur. J. Mech. A/Solids, 17 (1998), 789.  doi: 10.1016/S0997-7538(98)80005-3.  Google Scholar

[58]

U. Stefanelli, Magnetic control of magnetic shape-memory single crystals,, Phys. B, 407 (2012), 1316.  doi: 10.1016/j.physb.2011.06.043.  Google Scholar

[59]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time,, SIAM Journal on Control and Optimization (SICON), 50 (2012), 2836.  doi: 10.1137/110839187.  Google Scholar

[60]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: regularization and differentiability,, Preprint SPP1253-119, (2011), 1253.   Google Scholar

[61]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: optimality conditions,, Preprint SPP1253-119, (2011), 1253.   Google Scholar

[62]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasi-linear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733.  doi: 10.1137/060653159.  Google Scholar

show all references

References:
[1]

T. Aiki and N. Kenmochi, Some models for shape memory alloys,, Mathematical aspects of modelling structure formation phenomena, 17 (2002), 144.   Google Scholar

[2]

M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys,, Contin. Mech. Thermodyn., 15 (2003), 463.  doi: 10.1007/s00161-003-0127-3.  Google Scholar

[3]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys,, Preprint IMATI-CNR 3PV13/3/0, (2013).   Google Scholar

[4]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys,, GAMM-Mitt., 34 (2011), 90.  doi: 10.1002/gamm.201110014.  Google Scholar

[5]

F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials,, Math. Models Meth. Appl. Sci., 18 (2008), 125.  doi: 10.1142/S0218202508002632.  Google Scholar

[6]

F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations,, Internat. J. Numer. Methods Engrg., 55 (2002), 1255.  doi: 10.1002/nme.619.  Google Scholar

[7]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems,, Internat. J. Numer. Meth. Engrg., 61 (2004), 807.  doi: 10.1002/nme.1086.  Google Scholar

[8]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications,, Internat. J. Numer. Meth. Engrg., 61 (2004), 716.  doi: 10.1002/nme.1087.  Google Scholar

[9]

F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with permanent inelasticity,, Int. J. Plasticity, 23 (2007), 207.  doi: 10.1016/j.ijplas.2006.02.012.  Google Scholar

[10]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631.  doi: 10.1016/j.cma.2009.01.019.  Google Scholar

[11]

N. Barrera, P. Biscari and M. F. Urbano, Macroscopic modeling of functional fatigue in shape memory alloys,, Eur. J. Mech. A/Solids, ().   Google Scholar

[12]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion,, Math. Modelling Numer. Anal., 45 (2011), 477.  doi: 10.1051/m2an/2010063.  Google Scholar

[13]

B. Benesova, M. Frost and P. Sedlak, A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations,, Preprint NCMM/2013/17, ().   Google Scholar

[14]

A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis,, Math. Models Meth. Appl. Sci., 21 (2011), 1043.  doi: 10.1142/S0218202511005246.  Google Scholar

[15]

A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys,, Preprint IMATI-CNR, (2010).   Google Scholar

[16]

A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys,, Discrete Cont. Dyn. S. - Series S, 6 (2013), 293.   Google Scholar

[17]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginburg-Landau model,, Physica D, 239 (2010), 95.  doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[18]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, Math Studies, (1973).   Google Scholar

[19]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Applied Mathematical Sciences, (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[20]

M. Brokate and J. Sprekels, Optimal control of shape memory alloys with solid-solid phase transitions,, in Emerging applications in free boundary problems (Montreal, (1990), 208.   Google Scholar

[21]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature,, Numer. Funct. Anal. Optim., 19 (1998), 489.  doi: 10.1080/01630569808816840.  Google Scholar

[22]

P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermodynamical evolution of shape memory alloys,, Nonlinear Anal., 18 (1992), 873.  doi: 10.1016/0362-546X(92)90228-7.  Google Scholar

[23]

T. W. Duerig and A. R. Pelton editors, SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference,, ASM International, (2003).   Google Scholar

[24]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B: Condensed Matter, 407 (2012), 1415.  doi: 10.1016/j.physb.2011.10.017.  Google Scholar

[25]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Comm. Pure Appl. Anal., 12 (2013), 2973.  doi: 10.3934/cpaa.2013.12.2973.  Google Scholar

[26]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate,, Discrete Cont. Dyn. S. Series B, 19 (2014).   Google Scholar

[27]

M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials,, Netw. Heterog. Media, 6 (2011), 145.  doi: 10.3934/nhm.2011.6.145.  Google Scholar

[28]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys,, Discrete Cont. Dyn. S. - Series S, 6 (2013), 369.   Google Scholar

[29]

V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials,, Comput. Mech., 44 (2009), 405.  doi: 10.1007/s00466-009-0381-8.  Google Scholar

[30]

V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain,, Internat. J. Numer. Methods Engrg., 81 (2010), 761.   Google Scholar

[31]

F. Falk, Martensitic domain boundaries in shape-memory alloys as solitary waves,, J. Phys. C4 Suppl., 12 (1982), 3.   Google Scholar

[32]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys,, J. Phys. Condens. Matter, 2 (1990), 61.  doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[33]

M. Frémond, Matériaux à mémoire de forme,, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239.   Google Scholar

[34]

S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys,, Contin. Mech. Thermodyn., 24 (2012), 63.  doi: 10.1007/s00161-011-0221-x.  Google Scholar

[35]

K.-H. Hoffmann, M. Niezgódka and S. Zheng, Existence and uniqueness to an extended model of the dynamical developments in shape memory alloys,, Nonlinear Anal., 15 (1990), 977.  doi: 10.1016/0362-546X(90)90079-V.  Google Scholar

[36]

K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements,, Adv. Math. Sci. Appl., 7 (1997), 427.   Google Scholar

[37]

K.-H. Hoffmann and A. Z. Ochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements,, Math. Methods Appl. Sci., 21 (1998), 589.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<589::AID-MMA904>3.0.CO;2-D.  Google Scholar

[38]

O. Klein, Stability and uniqueness results for a numerical appproximation of the thermomechanical phase transitions in shape memory alloys,, Adv. in Math. Sci. and Appl., 5 (1995), 91.   Google Scholar

[39]

P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension,, M2AN Math. Model. Numer. Anal., 44 (2010), 1239.  doi: 10.1051/m2an/2010024.  Google Scholar

[40]

P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires,, Math. Mech. Solids, 16 (2011), 349.  doi: 10.1177/1081286510386935.  Google Scholar

[41]

G. A. Maugin, The Thermomechanics of Plasticity and Fracture,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (1992).  doi: 10.1017/CBO9781139172400.  Google Scholar

[42]

A. Mielke, Evolution of rate-independent systems,, in Handbook of Differential Equations, 2 (2005), 461.   Google Scholar

[43]

A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys,, SIAM J. Math. Anal., 41 (2009), 1388.  doi: 10.1137/080726215.  Google Scholar

[44]

A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error estimates for discretizations of a rate-independent variational inequality,, SIAM J. Numer. Anal., 48 (2010), 1625.  doi: 10.1137/090750238.  Google Scholar

[45]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys,, Adv. Math. Sci. Appl., 17 (2007), 667.   Google Scholar

[46]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA, 11 (2004), 151.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[47]

L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys,, Preprint WIAS, (2011).   Google Scholar

[48]

I. Pawłow, Three-dimensional model of thermomechanical evolution of shape memory materials,, Control Cybernet., 29 (2000), 341.   Google Scholar

[49]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes,, SIAM J. Control Optim., 47 (2008), 2773.  doi: 10.1137/080718711.  Google Scholar

[50]

F. Rindler, Approximation of rate-independent optimal control problems,, SIAM J. Numer. Anal., 47 (2009), 3884.  doi: 10.1137/080744050.  Google Scholar

[51]

R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity,, Quaderno 05/2012 del Seminario Matematico di Brescia, (2012), 1.   Google Scholar

[52]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains,, SIAM J. Math. Anal., 42 (2010), 256.  doi: 10.1137/080729992.  Google Scholar

[53]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current,, Zeit. angew. Math. Phys., 61 (2010), 1.  doi: 10.1007/s00033-009-0007-1.  Google Scholar

[54]

T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis,, Arch. Rat. Mech. Anal., ().  doi: 10.1007/s00205-013-0648-2.  Google Scholar

[55]

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys,, Smart Mater. Struct., 16 (2007), 1751.  doi: 10.1088/0964-1726/16/5/030.  Google Scholar

[56]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys,, Math. Methods Appl. Sci., 17 (1994), 943.  doi: 10.1002/mma.1670171204.  Google Scholar

[57]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations,, Eur. J. Mech. A/Solids, 17 (1998), 789.  doi: 10.1016/S0997-7538(98)80005-3.  Google Scholar

[58]

U. Stefanelli, Magnetic control of magnetic shape-memory single crystals,, Phys. B, 407 (2012), 1316.  doi: 10.1016/j.physb.2011.06.043.  Google Scholar

[59]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time,, SIAM Journal on Control and Optimization (SICON), 50 (2012), 2836.  doi: 10.1137/110839187.  Google Scholar

[60]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: regularization and differentiability,, Preprint SPP1253-119, (2011), 1253.   Google Scholar

[61]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: optimality conditions,, Preprint SPP1253-119, (2011), 1253.   Google Scholar

[62]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasi-linear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733.  doi: 10.1137/060653159.  Google Scholar

[1]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[2]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[3]

Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309

[4]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[5]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[6]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

[7]

Alice Fiaschi. Young-measure quasi-static damage evolution: The nonconvex and the brittle cases. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 17-42. doi: 10.3934/dcdss.2013.6.17

[8]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[9]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[10]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[11]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[12]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

[13]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[14]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[15]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[16]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[17]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[18]

Diego Grandi, Ulisse Stefanelli. The Souza-Auricchio model for shape-memory alloys. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 723-747. doi: 10.3934/dcdss.2015.8.723

[19]

Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237

[20]

Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]