\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials

Abstract Related Papers Cited by
  • We address the thermal control of the quasi-static evolution of a polycrystalline shape memory alloy specimen. The thermomechanical evolution of the body is described by means of an extension of the phenomenological Souza-Auricchio model [6,7,8,57] accounting also for permanent inelastic effects [9,11,27]. By assuming to be able to control the temperature of the body in time we determine the corresponding quasi-static evolution in the energetic sense. In a similar way as in [28], using results by Rindler [49,50] we prove the existence of optimal controls for a suitably large class of cost functionals.
    Mathematics Subject Classification: 74C05, 49J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Aiki and N. Kenmochi, Some models for shape memory alloys, Mathematical aspects of modelling structure formation phenomena, GAKUTO Internat. Ser. Math. Sci. Appl., Tokio, 17 (2002), 144-162.

    [2]

    M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Contin. Mech. Thermodyn., 15 (2003), 463-485.doi: 10.1007/s00161-003-0127-3.

    [3]

    F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys, Preprint IMATI-CNR 3PV13/3/0, 2013.

    [4]

    F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys, GAMM-Mitt., 34 (2011), 90-96.doi: 10.1002/gamm.201110014.

    [5]

    F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials, Math. Models Meth. Appl. Sci., 18 (2008), 125-164.doi: 10.1142/S0218202508002632.

    [6]

    F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations, Internat. J. Numer. Methods Engrg., 55 (2002), 1255-1284.doi: 10.1002/nme.619.

    [7]

    F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems, Internat. J. Numer. Meth. Engrg., 61 (2004), 807-836.doi: 10.1002/nme.1086.

    [8]

    F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications, Internat. J. Numer. Meth. Engrg., 61 (2004), 716-737.doi: 10.1002/nme.1087.

    [9]

    F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with permanent inelasticity, Int. J. Plasticity, 23 (2007), 207-226.doi: 10.1016/j.ijplas.2006.02.012.

    [10]

    F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631-1637.doi: 10.1016/j.cma.2009.01.019.

    [11]

    N. Barrera, P. Biscari and M. F. Urbano, Macroscopic modeling of functional fatigue in shape memory alloys, Eur. J. Mech. A/Solids, submitted.

    [12]

    S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, Math. Modelling Numer. Anal., 45 (2011), 477-504.doi: 10.1051/m2an/2010063.

    [13]

    B. Benesova, M. Frost and P. Sedlak, A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations, Preprint NCMM/2013/17, Necas center, Prague.

    [14]

    A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069.doi: 10.1142/S0218202511005246.

    [15]

    A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Preprint IMATI-CNR, 23PV10/21/0, 2010.

    [16]

    A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys, Discrete Cont. Dyn. S. - Series S, 6 (2013), 293-316.

    [17]

    V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginburg-Landau model, Physica D, 239 (2010), 95-102.doi: 10.1016/j.physd.2009.10.005.

    [18]

    H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, 5, North-Holland, Amsterdam/New York, 1973.

    [19]

    M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Applied Mathematical Sciences, 121, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-4048-8.

    [20]

    M. Brokate and J. Sprekels, Optimal control of shape memory alloys with solid-solid phase transitions, in Emerging applications in free boundary problems (Montreal, 1990), Pitman Res. Notes Math. Ser., 280, Longman Sci. Tech., Harlow, 1993, 208-214.

    [21]

    N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature, Numer. Funct. Anal. Optim., 19 (1998), 489-498.doi: 10.1080/01630569808816840.

    [22]

    P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermodynamical evolution of shape memory alloys, Nonlinear Anal., 18 (1992), 873-888.doi: 10.1016/0362-546X(92)90228-7.

    [23]

    T. W. Duerig and A. R. Pelton editors, SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference, ASM International, 2003.

    [24]

    M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading, Physica B: Condensed Matter, 407 (2012), 1415-1416.doi: 10.1016/j.physb.2011.10.017.

    [25]

    M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam, Comm. Pure Appl. Anal., 12 (2013), 2973-2996.doi: 10.3934/cpaa.2013.12.2973.

    [26]

    M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in a thermo-visco-elastoplastic plate, Discrete Cont. Dyn. S. Series B, 19 (2014).

    [27]

    M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials, Netw. Heterog. Media, 6 (2011), 145-165.doi: 10.3934/nhm.2011.6.145.

    [28]

    M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete Cont. Dyn. S. - Series S, 6 (2013), 369-386.

    [29]

    V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials, Comput. Mech., 44 (2009), 405-421.doi: 10.1007/s00466-009-0381-8.

    [30]

    V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain, Internat. J. Numer. Methods Engrg., 81 (2010), 761-785.

    [31]

    F. Falk, Martensitic domain boundaries in shape-memory alloys as solitary waves, J. Phys. C4 Suppl., 12 (1982), 3-15.

    [32]

    F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys, J. Phys. Condens. Matter, 2 (1990), 61-77.doi: 10.1088/0953-8984/2/1/005.

    [33]

    M. Frémond, Matériaux à mémoire de forme, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239-244.

    [34]

    S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys, Contin. Mech. Thermodyn., 24 (2012), 63-77.doi: 10.1007/s00161-011-0221-x.

    [35]

    K.-H. Hoffmann, M. Niezgódka and S. Zheng, Existence and uniqueness to an extended model of the dynamical developments in shape memory alloys, Nonlinear Anal., 15 (1990), 977-990.doi: 10.1016/0362-546X(90)90079-V.

    [36]

    K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements, Adv. Math. Sci. Appl., 7 (1997), 427-436.

    [37]

    K.-H. Hoffmann and A. Z. Ochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements, Math. Methods Appl. Sci., 21 (1998), 589-603.doi: 10.1002/(SICI)1099-1476(19980510)21:7<589::AID-MMA904>3.0.CO;2-D.

    [38]

    O. Klein, Stability and uniqueness results for a numerical appproximation of the thermomechanical phase transitions in shape memory alloys, Adv. in Math. Sci. and Appl., 5 (1995), 91-116.

    [39]

    P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension, M2AN Math. Model. Numer. Anal., 44 (2010), 1239-1253.doi: 10.1051/m2an/2010024.

    [40]

    P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires, Math. Mech. Solids, 16 (2011), 349-365.doi: 10.1177/1081286510386935.

    [41]

    G. A. Maugin, The Thermomechanics of Plasticity and Fracture, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9781139172400.

    [42]

    A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations, Evolutionary Equations, (editors, C. Dafermos and E. Feireisl), 2 (2005), 461-559.

    [43]

    A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys, SIAM J. Math. Anal., 41 (2009), 1388-1414.doi: 10.1137/080726215.

    [44]

    A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error estimates for discretizations of a rate-independent variational inequality, SIAM J. Numer. Anal., 48 (2010), 1625-1646.doi: 10.1137/090750238.

    [45]

    A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys, Adv. Math. Sci. Appl., 17 (2007), 667-685.

    [46]

    A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA, Nonlinear Diff. Equations Applications, 11 (2004), 151-189.doi: 10.1007/s00030-003-1052-7.

    [47]

    L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys, Preprint WIAS, 1608, (2011).

    [48]

    I. Pawłow, Three-dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365.

    [49]

    F. Rindler, Optimal control for nonconvex rate-independent evolution processes, SIAM J. Control Optim., 47 (2008), 2773-2794.doi: 10.1137/080718711.

    [50]

    F. Rindler, Approximation of rate-independent optimal control problems, SIAM J. Numer. Anal., 47 (2009), 3884-3909.doi: 10.1137/080744050.

    [51]

    R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, Quaderno 05/2012 del Seminario Matematico di Brescia, (2012), 1-50.

    [52]

    T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.doi: 10.1137/080729992.

    [53]

    T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current, Zeit. angew. Math. Phys., 61 (2010), 1-20.doi: 10.1007/s00033-009-0007-1.

    [54]

    T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Rat. Mech. Anal., to appear. doi: 10.1007/s00205-013-0648-2.

    [55]

    A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys, Smart Mater. Struct., 16 (2007), 1751-1765.doi: 10.1088/0964-1726/16/5/030.

    [56]

    J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys, Math. Methods Appl. Sci., 17 (1994), 943-952.doi: 10.1002/mma.1670171204.

    [57]

    A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations, Eur. J. Mech. A/Solids, 17 (1998), 789-806.doi: 10.1016/S0997-7538(98)80005-3.

    [58]

    U. Stefanelli, Magnetic control of magnetic shape-memory single crystals, Phys. B, 407 (2012), 1316-1321.doi: 10.1016/j.physb.2011.06.043.

    [59]

    G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time, SIAM Journal on Control and Optimization (SICON), 50 (2012), 2836-2861.doi: 10.1137/110839187.

    [60]

    G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part II: regularization and differentiability, Preprint SPP1253-119, 2011.

    [61]

    G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part III: optimality conditions, Preprint SPP1253-119, 2011.

    [62]

    S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasi-linear thermoelasticity system arising in shape memory materials, SIAM J. Math. Anal., 38 (2007), 1733-1759.doi: 10.1137/060653159.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return