\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Steady free fall of one-dimensional bodies in a hyperviscous fluid at low Reynolds number

Abstract / Introduction Related Papers Cited by
  • The paper is devoted to the study of the motion of one-dimensional rigid bodies during a free fall in a quasi-Newtonian hyperviscous fluid at low Reynolds number. We show the existence of a steady solution and furnish sufficient conditions on the geometry of the body in order to get purely translational motions. Such conditions are based on a generalized version of the so-called Reciprocal Theorem for fluids.
    Mathematics Subject Classification: Primary: 76D07; Secondary: 35Q35, 35J91.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.doi: 10.1002/cpa.3160120405.

    [2]

    H. Brenner, The Stokes resistance of an arbitrary particle-II: An extension, Chem. Eng. Sci., 19 (1964), 599-629.doi: 10.1016/0009-2509(64)85051-X.

    [3]

    E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.doi: 10.1007/s00205-006-0015-7.

    [4]

    G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in Handbook of mathematical fluid dynamics. North-Holland, Amsterdam, 1 (2002), 653-791.doi: 10.1016/S1874-5792(02)80014-3.

    [5]

    G. G. Giusteri, The multiple nature of concentrated interactions in second-gradient dissipative liquids, Z. Angew. Math. Phys., 64 (2013), 371-380.doi: 10.1007/s00033-012-0229-5.

    [6]

    G. G. Giusteri and E. Fried, Slender-body theory for viscous flow via dimensional reduction and hyperviscous regularization, Meccanica, 49 (2014), 2153-2167.doi: 10.1007/s11012-014-9890-4.

    [7]

    G. G. Giusteri, A. Marzocchi and A. Musesti, Three-dimensional nonsimple viscous liquids dragged by one-dimensional immersed bodies, Mech. Res. Commun., 37 (2010), 642-646.doi: 10.1016/j.mechrescom.2010.09.001.

    [8]

    G. G. Giusteri, A. Marzocchi, and A. Musesti, Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures, Acta Mech., 217 (2011), 191-204.doi: 10.1007/s00707-010-0387-5.

    [9]

    G. G. Giusteri, A. Marzocchi, and A. Musesti, Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids, DCDS-B, 19 (2014), 2145-2157.doi: 10.3934/dcdsb.2014.19.2145.

    [10]

    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Martinus Nijhoff Publishers, The Hague, 1983.

    [11]

    A. Musesti, Isotropic linear constitutive relations for nonsimple fluids, Acta Mech., 204 (2009), 81-88.doi: 10.1007/s00707-008-0050-6.

    [12]

    H. F. Weinberger, Variational properties of steady fall in Stokes flow, J. Fluid Mech., 52 (1972), 321-344.doi: 10.1017/S0022112072001442.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return