September  2014, 3(3): 499-524. doi: 10.3934/eect.2014.3.499

A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$

1. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano

2. 

Dipartimento di Matematica, Università degli Studi di Parma, Viale Parco Area delle Scienze 53/A, I-43124 Parma

Received  April 2013 Revised  May 2014 Published  August 2014

Via Carleman's estimates we prove uniqueness and continuous dependence results for a severely ill-posed linear integro-differential singular parabolic problems without initial conditions.
Citation: Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499
References:
[1]

D. Bainov and P. Simeonov, Integral Inequalities and Applications,, Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev], (1992). doi: 10.1007/978-94-015-8034-2.

[2]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105003.

[3]

M. Choulli, Une Introduction aux Problèms Inverses Elliptiques et Paraboliques,, Mathematiques and Applications, (2009). doi: 10.1007/978-3-642-02460-3.

[4]

P. Lax, Functional Analysis,, Wiley-Interscience, (2002).

[5]

A. Lorenzi, Two strongly ill-posed problems,, AIP Conference Proceedings, 1329 (2011), 150.

[6]

A. Lorenzi, Recovering a constant in a strongly ill-posed parabolic problem,, J. Abstr. Differ. Equ. Appl., 2 (2012), 72.

[7]

A. Lorenzi, Linear integro-differential Schrödinger and plate problems without initial conditions,, Appl. Math. Optim., 67 (2013), 391. doi: 10.1007/s00245-013-9192-6.

[8]

A. Lorenzi, Severely ill-posed linear parabolic integrodifferential problems,, J. Inverse Ill-Posed Probl., (2012).

[9]

A. Lorenzi, Recovering a t-function in a strongly ill-posed integro-differential parabolic problem with integral boundary conditions,, to appear in Mathematical Modelling and Analysis., ().

[10]

A. Lorenzi and L. Lorenzi, A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain $\Omega\times \mathcal O$ of $\mathbb R^{M+N}$,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/2/025007.

[11]

A. Lorenzi and F. Messina, Unique continuation and continuous dependence results for a strongly ill-posed integro-differential parabolic problem,, J. Inverse Ill-Posed Probl., 20 (2012), 615. doi: 10.1515/jip-2012-0032.

[12]

A. Lorenzi and I. Munteanu, Recovering a constant in the two-dimensional Navier-Stokes system with no initial condition,, to appear in Applied Mathematics and Optimization., (). doi: 10.1007/s00245-014-9261-5.

[13]

A. Lorenzi and M. Yamamoto, Continuous dependence and uniqueness for a strongly ill-posed problem for linear integrodifferential parabolic equations,, in progress., ().

show all references

References:
[1]

D. Bainov and P. Simeonov, Integral Inequalities and Applications,, Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev], (1992). doi: 10.1007/978-94-015-8034-2.

[2]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/10/105003.

[3]

M. Choulli, Une Introduction aux Problèms Inverses Elliptiques et Paraboliques,, Mathematiques and Applications, (2009). doi: 10.1007/978-3-642-02460-3.

[4]

P. Lax, Functional Analysis,, Wiley-Interscience, (2002).

[5]

A. Lorenzi, Two strongly ill-posed problems,, AIP Conference Proceedings, 1329 (2011), 150.

[6]

A. Lorenzi, Recovering a constant in a strongly ill-posed parabolic problem,, J. Abstr. Differ. Equ. Appl., 2 (2012), 72.

[7]

A. Lorenzi, Linear integro-differential Schrödinger and plate problems without initial conditions,, Appl. Math. Optim., 67 (2013), 391. doi: 10.1007/s00245-013-9192-6.

[8]

A. Lorenzi, Severely ill-posed linear parabolic integrodifferential problems,, J. Inverse Ill-Posed Probl., (2012).

[9]

A. Lorenzi, Recovering a t-function in a strongly ill-posed integro-differential parabolic problem with integral boundary conditions,, to appear in Mathematical Modelling and Analysis., ().

[10]

A. Lorenzi and L. Lorenzi, A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain $\Omega\times \mathcal O$ of $\mathbb R^{M+N}$,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/2/025007.

[11]

A. Lorenzi and F. Messina, Unique continuation and continuous dependence results for a strongly ill-posed integro-differential parabolic problem,, J. Inverse Ill-Posed Probl., 20 (2012), 615. doi: 10.1515/jip-2012-0032.

[12]

A. Lorenzi and I. Munteanu, Recovering a constant in the two-dimensional Navier-Stokes system with no initial condition,, to appear in Applied Mathematics and Optimization., (). doi: 10.1007/s00245-014-9261-5.

[13]

A. Lorenzi and M. Yamamoto, Continuous dependence and uniqueness for a strongly ill-posed problem for linear integrodifferential parabolic equations,, in progress., ().

[1]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[2]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[3]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[4]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[5]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[6]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[7]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[8]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[9]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[10]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[11]

Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283

[12]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[13]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[14]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[15]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[16]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[17]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[18]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[19]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[20]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]