September  2014, 3(3): 499-524. doi: 10.3934/eect.2014.3.499

A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$

1. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano

2. 

Dipartimento di Matematica, Università degli Studi di Parma, Viale Parco Area delle Scienze 53/A, I-43124 Parma

Received  April 2013 Revised  May 2014 Published  August 2014

Via Carleman's estimates we prove uniqueness and continuous dependence results for a severely ill-posed linear integro-differential singular parabolic problems without initial conditions.
Citation: Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499
References:
[1]

D. Bainov and P. Simeonov, Integral Inequalities and Applications,, Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev], (1992).  doi: 10.1007/978-94-015-8034-2.  Google Scholar

[2]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105003.  Google Scholar

[3]

M. Choulli, Une Introduction aux Problèms Inverses Elliptiques et Paraboliques,, Mathematiques and Applications, (2009).  doi: 10.1007/978-3-642-02460-3.  Google Scholar

[4]

P. Lax, Functional Analysis,, Wiley-Interscience, (2002).   Google Scholar

[5]

A. Lorenzi, Two strongly ill-posed problems,, AIP Conference Proceedings, 1329 (2011), 150.   Google Scholar

[6]

A. Lorenzi, Recovering a constant in a strongly ill-posed parabolic problem,, J. Abstr. Differ. Equ. Appl., 2 (2012), 72.   Google Scholar

[7]

A. Lorenzi, Linear integro-differential Schrödinger and plate problems without initial conditions,, Appl. Math. Optim., 67 (2013), 391.  doi: 10.1007/s00245-013-9192-6.  Google Scholar

[8]

A. Lorenzi, Severely ill-posed linear parabolic integrodifferential problems,, J. Inverse Ill-Posed Probl., (2012).   Google Scholar

[9]

A. Lorenzi, Recovering a t-function in a strongly ill-posed integro-differential parabolic problem with integral boundary conditions,, to appear in Mathematical Modelling and Analysis., ().   Google Scholar

[10]

A. Lorenzi and L. Lorenzi, A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain $\Omega\times \mathcal O$ of $\mathbb R^{M+N}$,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/2/025007.  Google Scholar

[11]

A. Lorenzi and F. Messina, Unique continuation and continuous dependence results for a strongly ill-posed integro-differential parabolic problem,, J. Inverse Ill-Posed Probl., 20 (2012), 615.  doi: 10.1515/jip-2012-0032.  Google Scholar

[12]

A. Lorenzi and I. Munteanu, Recovering a constant in the two-dimensional Navier-Stokes system with no initial condition,, to appear in Applied Mathematics and Optimization., ().  doi: 10.1007/s00245-014-9261-5.  Google Scholar

[13]

A. Lorenzi and M. Yamamoto, Continuous dependence and uniqueness for a strongly ill-posed problem for linear integrodifferential parabolic equations,, in progress., ().   Google Scholar

show all references

References:
[1]

D. Bainov and P. Simeonov, Integral Inequalities and Applications,, Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev], (1992).  doi: 10.1007/978-94-015-8034-2.  Google Scholar

[2]

P. Cannarsa, J. Tort and M. Yamamoto, Determination of source terms in a degenerate parabolic equation,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105003.  Google Scholar

[3]

M. Choulli, Une Introduction aux Problèms Inverses Elliptiques et Paraboliques,, Mathematiques and Applications, (2009).  doi: 10.1007/978-3-642-02460-3.  Google Scholar

[4]

P. Lax, Functional Analysis,, Wiley-Interscience, (2002).   Google Scholar

[5]

A. Lorenzi, Two strongly ill-posed problems,, AIP Conference Proceedings, 1329 (2011), 150.   Google Scholar

[6]

A. Lorenzi, Recovering a constant in a strongly ill-posed parabolic problem,, J. Abstr. Differ. Equ. Appl., 2 (2012), 72.   Google Scholar

[7]

A. Lorenzi, Linear integro-differential Schrödinger and plate problems without initial conditions,, Appl. Math. Optim., 67 (2013), 391.  doi: 10.1007/s00245-013-9192-6.  Google Scholar

[8]

A. Lorenzi, Severely ill-posed linear parabolic integrodifferential problems,, J. Inverse Ill-Posed Probl., (2012).   Google Scholar

[9]

A. Lorenzi, Recovering a t-function in a strongly ill-posed integro-differential parabolic problem with integral boundary conditions,, to appear in Mathematical Modelling and Analysis., ().   Google Scholar

[10]

A. Lorenzi and L. Lorenzi, A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain $\Omega\times \mathcal O$ of $\mathbb R^{M+N}$,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/2/025007.  Google Scholar

[11]

A. Lorenzi and F. Messina, Unique continuation and continuous dependence results for a strongly ill-posed integro-differential parabolic problem,, J. Inverse Ill-Posed Probl., 20 (2012), 615.  doi: 10.1515/jip-2012-0032.  Google Scholar

[12]

A. Lorenzi and I. Munteanu, Recovering a constant in the two-dimensional Navier-Stokes system with no initial condition,, to appear in Applied Mathematics and Optimization., ().  doi: 10.1007/s00245-014-9261-5.  Google Scholar

[13]

A. Lorenzi and M. Yamamoto, Continuous dependence and uniqueness for a strongly ill-posed problem for linear integrodifferential parabolic equations,, in progress., ().   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]