September  2014, 3(3): 541-555. doi: 10.3934/eect.2014.3.541

Shocks and acceleration waves in modern continuum mechanics and in social systems

1. 

Department of Mathematical Sciences, University of Durham, Durham DH1 3LE

Received  May 2013 Revised  November 2013 Published  August 2014

The use of discontinuity surface propagation (e.g. shock waves and acceleration waves) is well known in modern continuum mechanics and yields a very useful means to obtain important information about a fully nonlinear theory with no approximation whatsoever. A brief review of some of the recent uses of such discontinuity surfaces is given and then we mention modelling of some social problems where the same mathematical techniques may be used to great effect. We specifically show how to develop and analyse models for evolution of one language overtaking use of another leading to possible extinction of the former language. Then we analyse shock transmission in a model for the evolutionary transition from the human period when hunter-gatherers transformed into farming. Finally we address modelling discontinuity waves in the context of diffusion of an innovation.
Citation: Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations & Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541
References:
[1]

K. Aoki, M. Shida and N. Shigesada, Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers,, Theor. Popul. Biol., 50 (1996), 1.  doi: 10.1006/tpbi.1996.0020.  Google Scholar

[2]

E. Barbera, C. Currò and G. Valenti, A hyperbolic reaction-diffusion model for the hantavirus infection,, Math. Meth. Appl. Science, 31 (2002), 481.  doi: 10.1002/mma.929.  Google Scholar

[3]

N. Bellomo and A. Bellouquid, On the modelling of crowd dynamics, looking at the beautiful shapes of swarms,, Netw. Heterog. Media, 6 (2011), 383.  doi: 10.3934/nhm.2011.6.383.  Google Scholar

[4]

N. Bellomo, B. Piccoli and A. Tosin, Modelling crowd dynamics from a complex system viewpoint,, Math. Models Meth. Appl. Science, 22 (2012).  doi: 10.1142/S0218202512300049.  Google Scholar

[5]

J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalised peer incidence,, Math. Models Meth. Appl. Science, 24 (2014), 719.  doi: 10.1142/S0218202513500656.  Google Scholar

[6]

J. J. Bissell and B. Straughan, Discontinuity waves as tipping points,, Discrete and Continuous Dynamical Systems B, 19 (2014), 1911.   Google Scholar

[7]

C. I. Christov, On frame indifferent formulation of the Maxwell - Cattaneo model of finite - speed heat conduction,, Mech. Res. Comm., 36 (2009), 481.  doi: 10.1016/j.mechrescom.2008.11.003.  Google Scholar

[8]

I. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008).  doi: 10.1088/1367-2630/10/4/043027.  Google Scholar

[9]

I. Christov and P. M. Jordan, Shock and traveling wave phenomena on an externally damped, non-linear string,, Int. J. Nonlinear Mech., 44 (2009), 511.  doi: 10.1016/j.ijnonlinmec.2008.12.004.  Google Scholar

[10]

I. Christov and P. M. Jordan, On the propagation of second - sound in nonlinear media: shock, acceleration and traveling wave results,, J. Thermal Stresses, 33 (2010), 1109.  doi: 10.1080/01495739.2010.517674.  Google Scholar

[11]

I. Christov, P. M. Jordan and C. I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: a numerical study,, Phys. Lett. A, 353 (2006), 273.  doi: 10.1016/j.physleta.2005.12.101.  Google Scholar

[12]

I. Christov, P. M. Jordan and C. I. Christov, Modelling weakly nonlinear acoustic wave propagation,, Quart. Jl Mech. Appl. Math., 60 (2007), 473.  doi: 10.1093/qjmam/hbm017.  Google Scholar

[13]

C. Ciarcià, P. Falsaperla, A. Giacobbe and G. Mulone, A mathematical model of anorexia and bulimia,, Manuscript, (2013).   Google Scholar

[14]

M. Ciarletta, B. Straughan and V. Tibullo, Christov-Morro theory for non-isothermal diffusion,, Nonlinear Anal. Real World Appl., 13 (2012), 1224.  doi: 10.1016/j.nonrwa.2011.10.014.  Google Scholar

[15]

C. Currò, M. Sugiyama, H. Suzumura and G. Valenti, Weak shock waves in isotropic solids at finite temperatures up to the melting point,, Continuum Mech. Thermodyn., 18 (2007), 395.  doi: 10.1007/s00161-006-0033-6.  Google Scholar

[16]

C. Currò, G. Valenti, M. Sugiyama and S. Taniguchi, Propagation of an acceleration wave in layers of isotropic solids at finite temperatures,, Wave Motion, 46 (2009), 108.  doi: 10.1016/j.wavemoti.2008.09.003.  Google Scholar

[17]

M. Fabrizio, A Cahn-Hilliard model for social integration,, in Modelling Social Problems and Health, (2013).   Google Scholar

[18]

M. Fabrizio, F. Franchi and B. Straughan, On a model for thermo-poroacoustic waves,, Int. J. Engng. Sci., 46 (2008), 790.  doi: 10.1016/j.ijengsci.2008.01.016.  Google Scholar

[19]

M. Fabrizio and A. Morro, Electromagnetism of Continuous Media,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar

[20]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen., 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[21]

M. Gentile and B. Straughan, Acceleration waves in double porosity elasticity,, Int. J. Engng. Sci., 73 (2013), 10.  doi: 10.1016/j.ijengsci.2013.07.006.  Google Scholar

[22]

M. Gentile and B. Straughan, Hyperbolic diffusion with Christov-Morro theory,, Math. Comput. Simulat., (2013).  doi: 10.1016/j.matcom.2012.07.010.  Google Scholar

[23]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy-dissipation,, J. Elasticity, 31 (1993), 189.  doi: 10.1007/BF00044969.  Google Scholar

[24]

H. F. Huo and N. N. Song, Global stability for a binge drinking model with two stages,, Discrete Dyn. Nat. Soc., 2012 (2012).  doi: 10.1155/2012/829386.  Google Scholar

[25]

N. Hussaini and M. Winter, Travelling waves for an epidemic model with non-smooth treatment rates,, J. Stat. Mech., 2010 (2010).  doi: 10.1088/1742-5468/2010/11/P11019.  Google Scholar

[26]

P. M. Jordan, Growth and decay of acoustic acceleration waves in Darcy-type porous media,, Proc. Roy. Soc. London A, 461 (2005), 2749.  doi: 10.1098/rspa.2005.1477.  Google Scholar

[27]

P. M. Jordan, Growth and decay of shock and acceleration waves in a traffic flow model with relaxation,, Phys. D, 207 (2005), 220.  doi: 10.1016/j.physd.2005.06.002.  Google Scholar

[28]

P. M. Jordan, Finite amplitude acoustic travelling waves in a fluid that saturates a porous medium: Acceleration wave formation,, Phys. Lett. A, 355 (2006), 216.  doi: 10.1016/j.physleta.2006.02.033.  Google Scholar

[29]

P. M. Jordan, Growth, decay and bifurcation of shock amplitudes under the type-II flux law,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2783.  doi: 10.1098/rspa.2007.1895.  Google Scholar

[30]

P. M. Jordan, On the growth and decay of transverse acceleration waves on a nonlinear, externally damped string,, J. Sound and Vibration, 311 (2008), 597.  doi: 10.1016/j.jsv.2007.09.024.  Google Scholar

[31]

P. M. Jordan, Some remarks on nonlinear poroacoustic phenomena,, Math. Comput. Simulation, 80 (2009), 202.  doi: 10.1016/j.matcom.2009.06.004.  Google Scholar

[32]

P. M. Jordan, A note on poroacoustic travelling waves under Forchheimer's law,, Phys. Lett. A, 377 (2013), 1350.  doi: 10.1016/j.physleta.2013.03.041.  Google Scholar

[33]

P. M. Jordan and A. Puri, Qualitative results for solutions of the steady Fisher - KPP equation,, Appl. Math. Lett., 15 (2002), 239.  doi: 10.1016/S0893-9659(01)00124-0.  Google Scholar

[34]

A. S. Kalula and F. Nyabadza, A theoretical model for substance abuse in the presence of treatment,, S. Afr. J. Sci., 108 (2012), 96.  doi: 10.4102/sajs.v108i3/4.654.  Google Scholar

[35]

A. Kandler and J. Steele, Ecological models of language competition,, Biological Theory, 3 (2008), 164.  doi: 10.1162/biot.2008.3.2.164.  Google Scholar

[36]

A. Kandler, R. Unger and J. Steele, Language shift, bilingualism and the future of Britain's Celtic languages,, Phil. Trans. Royal Soc. London B, 365 (2010), 3855.  doi: 10.1098/rstb.2010.0051.  Google Scholar

[37]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Étude de l'équations de la diffusion avec croissance de la quantité de matière et son application a un prolème biologique,, Bull. Univ. Moskou, 1 (1937), 1.   Google Scholar

[38]

J. Liu and T. Zhang, Global behaviour of a heroin epidemic model with distributed delays,, Appl. Math. Letters, 24 (2011), 1685.  doi: 10.1016/j.aml.2011.04.019.  Google Scholar

[39]

A. Marasco, On the first-order speeds in any direction of acceleration waves in prestressed second - order isotropic, compressible and homogeneous materials,, Math. Comput. Modelling, 49 (2009), 1644.  doi: 10.1016/j.mcm.2008.07.037.  Google Scholar

[40]

A. Marasco, Second - order effects on the wave propagation in elastic, isotropic, incompressible and homogeneous media,, Int. J. Engng. Sci., 47 (2009), 499.  doi: 10.1016/j.ijengsci.2008.08.009.  Google Scholar

[41]

A. Marasco and A. Romano, On the acceleration waves in second - order elastic, isotropic, compressible and homogeneous materials,, Math. Comput. Modelling, 49 (2009), 1504.  doi: 10.1016/j.mcm.2008.06.005.  Google Scholar

[42]

A. Morro, Evolution equations and thermodynamic restrictions for dissipative solids,, Math. Comput. Modelling, 52 (2010), 1869.  doi: 10.1016/j.mcm.2010.07.021.  Google Scholar

[43]

G. Mulone and B. Straughan, A note on heroin epidemics,, Math. Biosci., 218 (2009), 138.  doi: 10.1016/j.mbs.2009.01.006.  Google Scholar

[44]

G. Mulone and B. Straughan, Modelling binge drinking,, International Journal of Biomathematics, 5 (2012).  doi: 10.1142/S1793524511001453.  Google Scholar

[45]

F. Nyabadza, S. Mukwembi and B.G. Rodrigues, A graph theoretical perspective of a drug abuse epidemic model,, Physica A - Statistical Methods and Applications, 390 (2011), 1723.  doi: 10.1016/j.physa.2011.01.014.  Google Scholar

[46]

F. Nyabadza, J. B. H. Njagarah and R. J. Smith, Modelling the dynamics of crystal meth ('tik') abuse in the presence of drug-supply chains in South Africa,, Bull. Math. Biol., 75 (2013), 24.  doi: 10.1007/s11538-012-9790-5.  Google Scholar

[47]

P. Paoletti, Acceleration waves in complex materials,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 637.  doi: 10.3934/dcdsb.2012.17.637.  Google Scholar

[48]

T. Ruggeri and M. Sugiyama, Hyperbolicity, convexity and shock waves in one-dimensional crystalline solids,, J. Phys. A, 38 (2005), 4337.  doi: 10.1088/0305-4470/38/20/003.  Google Scholar

[49]

V. D. Sharma and R. Venkatramani, Evolution of weak shocks in one dimensional planar and non - planar gas dynamics,, Int. J. Non-linear Mechanics, 47 (2012), 918.  doi: 0.1186/2251-7235-7-14.  Google Scholar

[50]

B. Straughan, Stability and Wave motion in Porous Media,, volume 165, (2008).   Google Scholar

[51]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667.  doi: 10.1016/j.physleta.2010.04.054.  Google Scholar

[52]

B. Straughan, Heat Waves,, volume 177, (2011).  doi: 10.1007/978-1-4614-0493-4.  Google Scholar

[53]

B. Straughan, Gene-culture shock waves,, Phys. Lett. A, 377 (2013), 2531.  doi: 10.1016/j.physleta.2013.07.025.  Google Scholar

[54]

B. Straughan, Stability and uniqueness in double porosity elasticity,, Int. J. Engng. Sci., 65 (2013), 1.  doi: 10.1016/j.ijengsci.2013.01.001.  Google Scholar

[55]

G. Valenti, C. Curro and M. Sugiyama, Acceleration waves analysed by a new continuum model of solids incorporating microscopic thermal vibrations,, Continuum Mech. Thermodyn., 16 (2004), 185.  doi: 10.1007/s00161-003-0150-4.  Google Scholar

[56]

C. E. Walters, B. Straughan and J. Kendal, Modelling alcohol problems: Total recovery,, Ric. Mat., 62 (2013), 1.  doi: 10.1007/s11587-012-0138-0.  Google Scholar

[57]

W. Wang, P. Fergola, S. Lombardo and G. Mulone, Mathematical models of innovation diffusion with stage structure,, Appl. Math. Model., 30 (2006), 129.  doi: 10.1016/j.apm.2005.03.011.  Google Scholar

show all references

References:
[1]

K. Aoki, M. Shida and N. Shigesada, Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers,, Theor. Popul. Biol., 50 (1996), 1.  doi: 10.1006/tpbi.1996.0020.  Google Scholar

[2]

E. Barbera, C. Currò and G. Valenti, A hyperbolic reaction-diffusion model for the hantavirus infection,, Math. Meth. Appl. Science, 31 (2002), 481.  doi: 10.1002/mma.929.  Google Scholar

[3]

N. Bellomo and A. Bellouquid, On the modelling of crowd dynamics, looking at the beautiful shapes of swarms,, Netw. Heterog. Media, 6 (2011), 383.  doi: 10.3934/nhm.2011.6.383.  Google Scholar

[4]

N. Bellomo, B. Piccoli and A. Tosin, Modelling crowd dynamics from a complex system viewpoint,, Math. Models Meth. Appl. Science, 22 (2012).  doi: 10.1142/S0218202512300049.  Google Scholar

[5]

J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalised peer incidence,, Math. Models Meth. Appl. Science, 24 (2014), 719.  doi: 10.1142/S0218202513500656.  Google Scholar

[6]

J. J. Bissell and B. Straughan, Discontinuity waves as tipping points,, Discrete and Continuous Dynamical Systems B, 19 (2014), 1911.   Google Scholar

[7]

C. I. Christov, On frame indifferent formulation of the Maxwell - Cattaneo model of finite - speed heat conduction,, Mech. Res. Comm., 36 (2009), 481.  doi: 10.1016/j.mechrescom.2008.11.003.  Google Scholar

[8]

I. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation,, New J. Phys., 10 (2008).  doi: 10.1088/1367-2630/10/4/043027.  Google Scholar

[9]

I. Christov and P. M. Jordan, Shock and traveling wave phenomena on an externally damped, non-linear string,, Int. J. Nonlinear Mech., 44 (2009), 511.  doi: 10.1016/j.ijnonlinmec.2008.12.004.  Google Scholar

[10]

I. Christov and P. M. Jordan, On the propagation of second - sound in nonlinear media: shock, acceleration and traveling wave results,, J. Thermal Stresses, 33 (2010), 1109.  doi: 10.1080/01495739.2010.517674.  Google Scholar

[11]

I. Christov, P. M. Jordan and C. I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: a numerical study,, Phys. Lett. A, 353 (2006), 273.  doi: 10.1016/j.physleta.2005.12.101.  Google Scholar

[12]

I. Christov, P. M. Jordan and C. I. Christov, Modelling weakly nonlinear acoustic wave propagation,, Quart. Jl Mech. Appl. Math., 60 (2007), 473.  doi: 10.1093/qjmam/hbm017.  Google Scholar

[13]

C. Ciarcià, P. Falsaperla, A. Giacobbe and G. Mulone, A mathematical model of anorexia and bulimia,, Manuscript, (2013).   Google Scholar

[14]

M. Ciarletta, B. Straughan and V. Tibullo, Christov-Morro theory for non-isothermal diffusion,, Nonlinear Anal. Real World Appl., 13 (2012), 1224.  doi: 10.1016/j.nonrwa.2011.10.014.  Google Scholar

[15]

C. Currò, M. Sugiyama, H. Suzumura and G. Valenti, Weak shock waves in isotropic solids at finite temperatures up to the melting point,, Continuum Mech. Thermodyn., 18 (2007), 395.  doi: 10.1007/s00161-006-0033-6.  Google Scholar

[16]

C. Currò, G. Valenti, M. Sugiyama and S. Taniguchi, Propagation of an acceleration wave in layers of isotropic solids at finite temperatures,, Wave Motion, 46 (2009), 108.  doi: 10.1016/j.wavemoti.2008.09.003.  Google Scholar

[17]

M. Fabrizio, A Cahn-Hilliard model for social integration,, in Modelling Social Problems and Health, (2013).   Google Scholar

[18]

M. Fabrizio, F. Franchi and B. Straughan, On a model for thermo-poroacoustic waves,, Int. J. Engng. Sci., 46 (2008), 790.  doi: 10.1016/j.ijengsci.2008.01.016.  Google Scholar

[19]

M. Fabrizio and A. Morro, Electromagnetism of Continuous Media,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar

[20]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugen., 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[21]

M. Gentile and B. Straughan, Acceleration waves in double porosity elasticity,, Int. J. Engng. Sci., 73 (2013), 10.  doi: 10.1016/j.ijengsci.2013.07.006.  Google Scholar

[22]

M. Gentile and B. Straughan, Hyperbolic diffusion with Christov-Morro theory,, Math. Comput. Simulat., (2013).  doi: 10.1016/j.matcom.2012.07.010.  Google Scholar

[23]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy-dissipation,, J. Elasticity, 31 (1993), 189.  doi: 10.1007/BF00044969.  Google Scholar

[24]

H. F. Huo and N. N. Song, Global stability for a binge drinking model with two stages,, Discrete Dyn. Nat. Soc., 2012 (2012).  doi: 10.1155/2012/829386.  Google Scholar

[25]

N. Hussaini and M. Winter, Travelling waves for an epidemic model with non-smooth treatment rates,, J. Stat. Mech., 2010 (2010).  doi: 10.1088/1742-5468/2010/11/P11019.  Google Scholar

[26]

P. M. Jordan, Growth and decay of acoustic acceleration waves in Darcy-type porous media,, Proc. Roy. Soc. London A, 461 (2005), 2749.  doi: 10.1098/rspa.2005.1477.  Google Scholar

[27]

P. M. Jordan, Growth and decay of shock and acceleration waves in a traffic flow model with relaxation,, Phys. D, 207 (2005), 220.  doi: 10.1016/j.physd.2005.06.002.  Google Scholar

[28]

P. M. Jordan, Finite amplitude acoustic travelling waves in a fluid that saturates a porous medium: Acceleration wave formation,, Phys. Lett. A, 355 (2006), 216.  doi: 10.1016/j.physleta.2006.02.033.  Google Scholar

[29]

P. M. Jordan, Growth, decay and bifurcation of shock amplitudes under the type-II flux law,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2783.  doi: 10.1098/rspa.2007.1895.  Google Scholar

[30]

P. M. Jordan, On the growth and decay of transverse acceleration waves on a nonlinear, externally damped string,, J. Sound and Vibration, 311 (2008), 597.  doi: 10.1016/j.jsv.2007.09.024.  Google Scholar

[31]

P. M. Jordan, Some remarks on nonlinear poroacoustic phenomena,, Math. Comput. Simulation, 80 (2009), 202.  doi: 10.1016/j.matcom.2009.06.004.  Google Scholar

[32]

P. M. Jordan, A note on poroacoustic travelling waves under Forchheimer's law,, Phys. Lett. A, 377 (2013), 1350.  doi: 10.1016/j.physleta.2013.03.041.  Google Scholar

[33]

P. M. Jordan and A. Puri, Qualitative results for solutions of the steady Fisher - KPP equation,, Appl. Math. Lett., 15 (2002), 239.  doi: 10.1016/S0893-9659(01)00124-0.  Google Scholar

[34]

A. S. Kalula and F. Nyabadza, A theoretical model for substance abuse in the presence of treatment,, S. Afr. J. Sci., 108 (2012), 96.  doi: 10.4102/sajs.v108i3/4.654.  Google Scholar

[35]

A. Kandler and J. Steele, Ecological models of language competition,, Biological Theory, 3 (2008), 164.  doi: 10.1162/biot.2008.3.2.164.  Google Scholar

[36]

A. Kandler, R. Unger and J. Steele, Language shift, bilingualism and the future of Britain's Celtic languages,, Phil. Trans. Royal Soc. London B, 365 (2010), 3855.  doi: 10.1098/rstb.2010.0051.  Google Scholar

[37]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Étude de l'équations de la diffusion avec croissance de la quantité de matière et son application a un prolème biologique,, Bull. Univ. Moskou, 1 (1937), 1.   Google Scholar

[38]

J. Liu and T. Zhang, Global behaviour of a heroin epidemic model with distributed delays,, Appl. Math. Letters, 24 (2011), 1685.  doi: 10.1016/j.aml.2011.04.019.  Google Scholar

[39]

A. Marasco, On the first-order speeds in any direction of acceleration waves in prestressed second - order isotropic, compressible and homogeneous materials,, Math. Comput. Modelling, 49 (2009), 1644.  doi: 10.1016/j.mcm.2008.07.037.  Google Scholar

[40]

A. Marasco, Second - order effects on the wave propagation in elastic, isotropic, incompressible and homogeneous media,, Int. J. Engng. Sci., 47 (2009), 499.  doi: 10.1016/j.ijengsci.2008.08.009.  Google Scholar

[41]

A. Marasco and A. Romano, On the acceleration waves in second - order elastic, isotropic, compressible and homogeneous materials,, Math. Comput. Modelling, 49 (2009), 1504.  doi: 10.1016/j.mcm.2008.06.005.  Google Scholar

[42]

A. Morro, Evolution equations and thermodynamic restrictions for dissipative solids,, Math. Comput. Modelling, 52 (2010), 1869.  doi: 10.1016/j.mcm.2010.07.021.  Google Scholar

[43]

G. Mulone and B. Straughan, A note on heroin epidemics,, Math. Biosci., 218 (2009), 138.  doi: 10.1016/j.mbs.2009.01.006.  Google Scholar

[44]

G. Mulone and B. Straughan, Modelling binge drinking,, International Journal of Biomathematics, 5 (2012).  doi: 10.1142/S1793524511001453.  Google Scholar

[45]

F. Nyabadza, S. Mukwembi and B.G. Rodrigues, A graph theoretical perspective of a drug abuse epidemic model,, Physica A - Statistical Methods and Applications, 390 (2011), 1723.  doi: 10.1016/j.physa.2011.01.014.  Google Scholar

[46]

F. Nyabadza, J. B. H. Njagarah and R. J. Smith, Modelling the dynamics of crystal meth ('tik') abuse in the presence of drug-supply chains in South Africa,, Bull. Math. Biol., 75 (2013), 24.  doi: 10.1007/s11538-012-9790-5.  Google Scholar

[47]

P. Paoletti, Acceleration waves in complex materials,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 637.  doi: 10.3934/dcdsb.2012.17.637.  Google Scholar

[48]

T. Ruggeri and M. Sugiyama, Hyperbolicity, convexity and shock waves in one-dimensional crystalline solids,, J. Phys. A, 38 (2005), 4337.  doi: 10.1088/0305-4470/38/20/003.  Google Scholar

[49]

V. D. Sharma and R. Venkatramani, Evolution of weak shocks in one dimensional planar and non - planar gas dynamics,, Int. J. Non-linear Mechanics, 47 (2012), 918.  doi: 0.1186/2251-7235-7-14.  Google Scholar

[50]

B. Straughan, Stability and Wave motion in Porous Media,, volume 165, (2008).   Google Scholar

[51]

B. Straughan, Acoustic waves in a Cattaneo-Christov gas,, Phys. Lett. A, 374 (2010), 2667.  doi: 10.1016/j.physleta.2010.04.054.  Google Scholar

[52]

B. Straughan, Heat Waves,, volume 177, (2011).  doi: 10.1007/978-1-4614-0493-4.  Google Scholar

[53]

B. Straughan, Gene-culture shock waves,, Phys. Lett. A, 377 (2013), 2531.  doi: 10.1016/j.physleta.2013.07.025.  Google Scholar

[54]

B. Straughan, Stability and uniqueness in double porosity elasticity,, Int. J. Engng. Sci., 65 (2013), 1.  doi: 10.1016/j.ijengsci.2013.01.001.  Google Scholar

[55]

G. Valenti, C. Curro and M. Sugiyama, Acceleration waves analysed by a new continuum model of solids incorporating microscopic thermal vibrations,, Continuum Mech. Thermodyn., 16 (2004), 185.  doi: 10.1007/s00161-003-0150-4.  Google Scholar

[56]

C. E. Walters, B. Straughan and J. Kendal, Modelling alcohol problems: Total recovery,, Ric. Mat., 62 (2013), 1.  doi: 10.1007/s11587-012-0138-0.  Google Scholar

[57]

W. Wang, P. Fergola, S. Lombardo and G. Mulone, Mathematical models of innovation diffusion with stage structure,, Appl. Math. Model., 30 (2006), 129.  doi: 10.1016/j.apm.2005.03.011.  Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[7]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[18]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[19]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]