Citation: |
[1] |
G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Applicationes Mathematicae, 35 (2008), 259-280.doi: 10.4064/am35-3-2. |
[2] |
O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation, Academic Press, 1984. |
[3] |
H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Meth. in the Appl. Sci., 2 (1980), 556-581.doi: 10.1002/mma.1670020416. |
[4] |
S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 1994.doi: 10.1007/978-1-4757-4338-8. |
[5] |
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.doi: 10.1007/978-1-4612-3172-1. |
[6] |
A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech, 7 (2005), 368-404.doi: 10.1007/s00021-004-0121-y. |
[7] |
I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Communications on Pure and Applied Analysis, 12 (2013), 1635-1656.doi: 10.3934/cpaa.2013.12.1635. |
[8] |
I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Methods Appl. Sci., 34 (2011), 1801-1812.doi: 10.1002/mma.1496. |
[9] |
P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978. |
[10] |
M. Dauge, Stationary stokes and navier-stokes systems on two- or three-dimensional domains with corners, part 1: linearized equations, Siam J. Math. Anal., 20 (1989), 74-97.doi: 10.1137/0520006. |
[11] |
V. Domínguez and F. J. Sayas, Algorithm 884: A simple MATLAB implementation of the argyris element, ACM Trans. Math. Software, 35 (2009), Art. 16, 11 pp. |
[12] |
A. Ern and J. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, 2004.doi: 10.1007/978-1-4757-4355-5. |
[13] |
P. Grisvard, Caracterization de quelques espaces d'interpolation, Arch. Rational Mech. Anal., 25 (1967), 40-63.doi: 10.1007/BF00281421. |
[14] |
B. Kellogg, Properties of solutions of elliptic boundary value problems, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations(ed. A. K. Aziz), Academic Press, New York, (1972), 47-81. |
[15] |
S. Kesavan, Topics in Functional Analysis and Applications, Wiley, New York, 1989. |
[16] |
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, 1972. |
[17] |
P. Šolin, Partial Differential Equations and the Finite Element Method, Wiley, 2006. |
[18] |
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, Rhode Island, 2001. |
[19] |
R. Wait and A. R. Mitchell, Finite Element Analysis and Applications, Wiley, 1985. |