December  2014, 3(4): 557-578. doi: 10.3934/eect.2014.3.557

A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, United States

2. 

Department of Mathematics, Statistics, and Computer Science, Dordt College, Sioux Center, IA 51250, United States

Received  February 2014 Revised  May 2014 Published  October 2014

We present qualitative and numerical results on a partial differential equation (PDE) system which models a certain fluid-structure dynamics. Wellposedness is established by constructing for it a nonstandard semigroup generator representation; this representation is accomplished by an appropriate elimination of the pressure. This coupled PDE model involves the Stokes system which evolves on a three dimensional domain $\mathcal{O}$ coupled to a fourth order plate equation, possibly with rotational inertia parameter $\rho >0$. This plate PDE evolves on a flat portion $\Omega$ of the boundary of $\mathcal{O}$. The coupling on $\Omega$ is implemented via the Dirichlet trace of the Stokes system fluid variable - and so the no-slip condition is necessarily not in play - and via the Dirichlet boundary trace of the pressure, which essentially acts as a forcing term on $\Omega$. We note that as the Stokes fluid velocity does not vanish on $\Omega$, the pressure variable cannot be eliminated by the classic Leray projector; instead, it is identified as the solution of an elliptic boundary value problem. Eventually, wellposedness of the system is attained through a nonstandard variational (``inf-sup") formulation. Subsequently we show how our constructive proof of wellposedness naturally gives rise to a mixed finite element method for numerically approximating solutions of this fluid-structure dynamics.
Citation: George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557
References:
[1]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259.  doi: 10.4064/am35-3-2.  Google Scholar

[2]

O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation,, Academic Press, (1984).   Google Scholar

[3]

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners,, Math. Meth. in the Appl. Sci., 2 (1980), 556.  doi: 10.1002/mma.1670020416.  Google Scholar

[4]

S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4757-4338-8.  Google Scholar

[5]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[6]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech, 7 (2005), 368.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[7]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Communications on Pure and Applied Analysis, 12 (2013), 1635.  doi: 10.3934/cpaa.2013.12.1635.  Google Scholar

[8]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Methods Appl. Sci., 34 (2011), 1801.  doi: 10.1002/mma.1496.  Google Scholar

[9]

P. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[10]

M. Dauge, Stationary stokes and navier-stokes systems on two- or three-dimensional domains with corners, part 1: linearized equations,, Siam J. Math. Anal., 20 (1989), 74.  doi: 10.1137/0520006.  Google Scholar

[11]

V. Domínguez and F. J. Sayas, Algorithm 884: A simple MATLAB implementation of the argyris element,, ACM Trans. Math. Software, 35 (2009).   Google Scholar

[12]

A. Ern and J. Guermond, Theory and Practice of Finite Elements,, Springer-Verlag, (2004).  doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[13]

P. Grisvard, Caracterization de quelques espaces d'interpolation,, Arch. Rational Mech. Anal., 25 (1967), 40.  doi: 10.1007/BF00281421.  Google Scholar

[14]

B. Kellogg, Properties of solutions of elliptic boundary value problems,, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations(ed. A. K. Aziz), (1972), 47.   Google Scholar

[15]

S. Kesavan, Topics in Functional Analysis and Applications,, Wiley, (1989).   Google Scholar

[16]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972).   Google Scholar

[17]

P. Šolin, Partial Differential Equations and the Finite Element Method,, Wiley, (2006).   Google Scholar

[18]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001).   Google Scholar

[19]

R. Wait and A. R. Mitchell, Finite Element Analysis and Applications,, Wiley, (1985).   Google Scholar

show all references

References:
[1]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259.  doi: 10.4064/am35-3-2.  Google Scholar

[2]

O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation,, Academic Press, (1984).   Google Scholar

[3]

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners,, Math. Meth. in the Appl. Sci., 2 (1980), 556.  doi: 10.1002/mma.1670020416.  Google Scholar

[4]

S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4757-4338-8.  Google Scholar

[5]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,, Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[6]

A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, J. Math. Fluid Mech, 7 (2005), 368.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[7]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model,, Communications on Pure and Applied Analysis, 12 (2013), 1635.  doi: 10.3934/cpaa.2013.12.1635.  Google Scholar

[8]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate,, Math. Methods Appl. Sci., 34 (2011), 1801.  doi: 10.1002/mma.1496.  Google Scholar

[9]

P. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[10]

M. Dauge, Stationary stokes and navier-stokes systems on two- or three-dimensional domains with corners, part 1: linearized equations,, Siam J. Math. Anal., 20 (1989), 74.  doi: 10.1137/0520006.  Google Scholar

[11]

V. Domínguez and F. J. Sayas, Algorithm 884: A simple MATLAB implementation of the argyris element,, ACM Trans. Math. Software, 35 (2009).   Google Scholar

[12]

A. Ern and J. Guermond, Theory and Practice of Finite Elements,, Springer-Verlag, (2004).  doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[13]

P. Grisvard, Caracterization de quelques espaces d'interpolation,, Arch. Rational Mech. Anal., 25 (1967), 40.  doi: 10.1007/BF00281421.  Google Scholar

[14]

B. Kellogg, Properties of solutions of elliptic boundary value problems,, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations(ed. A. K. Aziz), (1972), 47.   Google Scholar

[15]

S. Kesavan, Topics in Functional Analysis and Applications,, Wiley, (1989).   Google Scholar

[16]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I,, Springer-Verlag, (1972).   Google Scholar

[17]

P. Šolin, Partial Differential Equations and the Finite Element Method,, Wiley, (2006).   Google Scholar

[18]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001).   Google Scholar

[19]

R. Wait and A. R. Mitchell, Finite Element Analysis and Applications,, Wiley, (1985).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[12]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]