• Previous Article
    Relaxation of regularity for the Westervelt equation by nonlinear damping with applications in acoustic-acoustic and elastic-acoustic coupling
  • EECT Home
  • This Issue
  • Next Article
    A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction
December  2014, 3(4): 579-594. doi: 10.3934/eect.2014.3.579

Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm

1. 

Mohammed First University, National School of Applied Sciences Al Hoceima, Ajdir, 32003, Al Hoceima, Morocco

2. 

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,Rehovot 76100, Israel

Received  May 2014 Revised  September 2014 Published  October 2014

We introduce here a simple finite-dimensional feedback control scheme for stabilizing solutions of infinite-dimensional dissipative evolution equations, such as reaction-diffusion systems, the Navier-Stokes equations and the Kuramoto-Sivashinsky equation. The designed feedback control scheme takes advantage of the fact that such systems possess finite number of determining parameters (degrees of freedom), namely, finite number of determining Fourier modes, determining nodes, and determining interpolants and projections. In particular, the feedback control scheme uses finitely many of such observables and controllers. This observation is of a particular interest since it implies that our approach has far more reaching applications, in particular, in data assimilation. Moreover, we emphasize that our scheme treats all kinds of the determining projections, as well as, the various dissipative equations with one unified approach. However, for the sake of simplicity we demonstrate our approach in this paper to a one-dimensional reaction-diffusion equation paradigm.
Citation: Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579
References:
[1]

A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation,, Physica D, 137 (2000), 49.  doi: 10.1016/S0167-2789(99)00175-X.  Google Scholar

[2]

A. Azouani, E. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables,, Journal of Nonlinear Analysis, 24 (2014), 277.  doi: 10.1007/s00332-013-9189-y.  Google Scholar

[3]

A. V. Babin and M. Vishik, Attractors of Evolution Partial Differential Equations,, North-Holland, (1992).   Google Scholar

[4]

H. Bessaih, E. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, preprint,, , ().   Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, 40 (2002).  doi: 10.1137/1.9780898719208.  Google Scholar

[6]

B. Cockburn, D. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives,, C.R. Acad. Sci.-Paris, 321 (1995), 563.   Google Scholar

[7]

B. Cockburn, D. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems,, Math. Comput., 66 (1997), 1073.  doi: 10.1090/S0025-5718-97-00850-8.  Google Scholar

[8]

P. Constantin, Ch. Doering and E. S. Titi, Rigorous estimates of small scales in turbulent flows,, Journal of Mathematical Physics, 37 (1996), 6152.  doi: 10.1063/1.531769.  Google Scholar

[9]

P. Constantin and C. Foias, Navier-Stokes Equations,, University of Chicago Press, (1988).   Google Scholar

[10]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, 70 (1989).  doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[11]

N. H. El-Farra, A. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints,, Automatica, 39 (2003), 715.  doi: 10.1016/S0005-1098(02)00304-7.  Google Scholar

[12]

C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[13]

C. Foias, M. Jolly and R. Karavchenko, Determining forms for the Kuramoto-Sivashinsky and Lorenz equations: Analysis and computations,, (in preparation)., ().   Google Scholar

[14]

C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations - the Fourier modes case,, Journal of Mathematical Physics, 53 (2012).   Google Scholar

[15]

C. Foias, M. Jolly, R. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations - the general interpolants case,, Uspekhi Matematicheskikh Nauk, 69 (2014), 359.  doi: 10.1070/RM2014v069n02ABEH004891.  Google Scholar

[16]

C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511546754.  Google Scholar

[17]

C. Foias, O. P. Manley, R. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations,, Physica D, 9 (1983), 157.  doi: 10.1016/0167-2789(83)90297-X.  Google Scholar

[18]

C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux,, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1.   Google Scholar

[19]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, Journal of Differential Equations, 73 (1988), 309.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[20]

C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,, Journal of Dynamics and Differential Equations, 1 (1989), 199.  doi: 10.1007/BF01047831.  Google Scholar

[21]

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values,, Math. Comput., 43 (1984), 117.  doi: 10.1090/S0025-5718-1984-0744927-9.  Google Scholar

[22]

C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations,, in Nonlinear Dynamics and Turbulence, (1983), 139.   Google Scholar

[23]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.  doi: 10.1088/0951-7715/4/1/009.  Google Scholar

[24]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Survey and Monographs, 25 (1988).   Google Scholar

[25]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Physica D, 44 (1990), 38.  doi: 10.1016/0167-2789(90)90046-R.  Google Scholar

[26]

D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations,, J. Math. Anal. Appl., 168 (1992), 72.  doi: 10.1016/0022-247X(92)90190-O.  Google Scholar

[27]

D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations,, Physica D, 60 (1992), 165.  doi: 10.1016/0167-2789(92)90233-D.  Google Scholar

[28]

D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations,, Indiana University Mathematics Journal, 42 (1993), 875.  doi: 10.1512/iumj.1993.42.42039.  Google Scholar

[29]

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 997.  doi: 10.1088/0951-7715/5/5/001.  Google Scholar

[30]

E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study,, (in preparation)., ().   Google Scholar

[31]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global attractors,, Cambridge Texts in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[32]

R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation,, J. Dynamics and Diff. Eqs, 15 (2003), 61.  doi: 10.1023/A:1026153311546.  Google Scholar

[33]

R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, in Foundations of Computational Mathematics, (1997), 382.   Google Scholar

[34]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, 15 (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[35]

S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems,, Journal of Process Control, 10 (2000), 177.  doi: 10.1016/S0959-1524(99)00029-3.  Google Scholar

[36]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[37]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).   Google Scholar

show all references

References:
[1]

A. Armaou and P. D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation,, Physica D, 137 (2000), 49.  doi: 10.1016/S0167-2789(99)00175-X.  Google Scholar

[2]

A. Azouani, E. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables,, Journal of Nonlinear Analysis, 24 (2014), 277.  doi: 10.1007/s00332-013-9189-y.  Google Scholar

[3]

A. V. Babin and M. Vishik, Attractors of Evolution Partial Differential Equations,, North-Holland, (1992).   Google Scholar

[4]

H. Bessaih, E. Olson and E. S. Titi, Continuous assimilation of data with stochastic noise, preprint,, , ().   Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, 40 (2002).  doi: 10.1137/1.9780898719208.  Google Scholar

[6]

B. Cockburn, D. A. Jones and E. S. Titi, Degrés de liberté déterminants pour équations non linéaires dissipatives,, C.R. Acad. Sci.-Paris, 321 (1995), 563.   Google Scholar

[7]

B. Cockburn, D. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems,, Math. Comput., 66 (1997), 1073.  doi: 10.1090/S0025-5718-97-00850-8.  Google Scholar

[8]

P. Constantin, Ch. Doering and E. S. Titi, Rigorous estimates of small scales in turbulent flows,, Journal of Mathematical Physics, 37 (1996), 6152.  doi: 10.1063/1.531769.  Google Scholar

[9]

P. Constantin and C. Foias, Navier-Stokes Equations,, University of Chicago Press, (1988).   Google Scholar

[10]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, 70 (1989).  doi: 10.1007/978-1-4612-3506-4.  Google Scholar

[11]

N. H. El-Farra, A. Armaou and P. D. Christofides, Analysis and control of parabolic PDE systems with input constraints,, Automatica, 39 (2003), 715.  doi: 10.1016/S0005-1098(02)00304-7.  Google Scholar

[12]

C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433.  doi: 10.1016/0375-9601(88)90295-2.  Google Scholar

[13]

C. Foias, M. Jolly and R. Karavchenko, Determining forms for the Kuramoto-Sivashinsky and Lorenz equations: Analysis and computations,, (in preparation)., ().   Google Scholar

[14]

C. Foias, M. Jolly, R. Kravchenko and E. S. Titi, A determining form for the 2D Navier-Stokes equations - the Fourier modes case,, Journal of Mathematical Physics, 53 (2012).   Google Scholar

[15]

C. Foias, M. Jolly, R. Karavchenko and E. S. Titi, A unified approach to determining forms for the 2D Navier-Stokes equations - the general interpolants case,, Uspekhi Matematicheskikh Nauk, 69 (2014), 359.  doi: 10.1070/RM2014v069n02ABEH004891.  Google Scholar

[16]

C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511546754.  Google Scholar

[17]

C. Foias, O. P. Manley, R. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations,, Physica D, 9 (1983), 157.  doi: 10.1016/0167-2789(83)90297-X.  Google Scholar

[18]

C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension deux,, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1.   Google Scholar

[19]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations,, Journal of Differential Equations, 73 (1988), 309.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[20]

C. Foias, G. R. Sell and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations,, Journal of Dynamics and Differential Equations, 1 (1989), 199.  doi: 10.1007/BF01047831.  Google Scholar

[21]

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values,, Math. Comput., 43 (1984), 117.  doi: 10.1090/S0025-5718-1984-0744927-9.  Google Scholar

[22]

C. Foias and R. Temam, Asymptotic numerical analysis for the Navier-Stokes equations,, in Nonlinear Dynamics and Turbulence, (1983), 139.   Google Scholar

[23]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.  doi: 10.1088/0951-7715/4/1/009.  Google Scholar

[24]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Survey and Monographs, 25 (1988).   Google Scholar

[25]

M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Physica D, 44 (1990), 38.  doi: 10.1016/0167-2789(90)90046-R.  Google Scholar

[26]

D. Jones and E. S. Titi, On the number of determining nodes for the 2-D Navier-Stokes equations,, J. Math. Anal. Appl., 168 (1992), 72.  doi: 10.1016/0022-247X(92)90190-O.  Google Scholar

[27]

D. Jones and E. S. Titi, Determining finite volume elements for the 2-D Navier-Stokes equations,, Physica D, 60 (1992), 165.  doi: 10.1016/0167-2789(92)90233-D.  Google Scholar

[28]

D. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations,, Indiana University Mathematics Journal, 42 (1993), 875.  doi: 10.1512/iumj.1993.42.42039.  Google Scholar

[29]

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 997.  doi: 10.1088/0951-7715/5/5/001.  Google Scholar

[30]

E. Lunasin and E. S. Titi, Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study,, (in preparation)., ().   Google Scholar

[31]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global attractors,, Cambridge Texts in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[32]

R. Rosa, Exact finite-dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation,, J. Dynamics and Diff. Eqs, 15 (2003), 61.  doi: 10.1023/A:1026153311546.  Google Scholar

[33]

R. Rosa and R. Temam, Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, in Foundations of Computational Mathematics, (1997), 382.   Google Scholar

[34]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, 15 (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[35]

S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi and T. J. Mountziares, Order reduction of nonlinear dynamic models for distributed reacting systems,, Journal of Process Control, 10 (2000), 177.  doi: 10.1016/S0959-1524(99)00029-3.  Google Scholar

[36]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[37]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[14]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[18]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (29)

Other articles
by authors

[Back to Top]