\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential mixing for the white-forced damped nonlinear wave equation

Abstract / Introduction Related Papers Cited by
  • The paper is devoted to studying the stochastic nonlinear wave (NLW) equation $$ \partial_t^2 u + \gamma \partial_t u - \triangle u + f(u)=h(x)+\eta(t,x) $$ in a bounded domain $D\subset\mathbb{R}^3$. The equation is supplemented with the Dirichlet boundary condition. Here $f$ is a nonlinear term, $h(x)$ is a function in $H^1_0(D)$ and $\eta(t,x)$ is a non-degenerate white noise. We show that the Markov process associated with the flow $\xi_u(t)=[u(t),\dot u (t)]$ has a unique stationary measure $\mu$, and the law of any solution converges to $\mu$ with exponential rate in the dual-Lipschitz norm.
    Mathematics Subject Classification: 35L70, 35R60, 37A25, 60H15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing, Amsterdam, 1992.

    [2]

    Y. Bakhtin, E. Cator and K. Khanin, Space-time stationary solutions for the Burgers equation, J. Amer. Math. Soc., 27 (2014), 193-238.doi: 10.1090/S0894-0347-2013-00773-0.

    [3]

    V. Barbu and G. Da Prato, The stochastic nonlinear damped wave equation, Appl. Math. Optim., 46 (2002), 125-141.doi: 10.1007/s00245-002-0744-4.

    [4]

    J. Bricmont, A. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys., 230 (2002), 87-132.doi: 10.1007/s00220-002-0708-1.

    [5]

    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, volume 49 of AMS Coll. Publ. AMS, Providence, 2002.

    [6]

    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223.

    [7]

    G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.doi: 10.1017/CBO9780511662829.

    [8]

    A. Debussche, Ergodicity results for the stochastic Navier-Stokes equations: An introduction, In Topics in Mathematical Fluid Mechanics, 2073 (2013), 23-108.doi: 10.1007/978-3-642-36297-2_2.

    [9]

    A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ., 5 (2005), 317-356.doi: 10.1007/s00028-005-0195-x.

    [10]

    A. Debussche and J. Vovelle, Invariant measure of scalar first-order conservation laws with stochastic forcing, arXiv:1310.3779.

    [11]

    N. Dirr and P. Souganidis, Large-time behavior for viscous and nonviscous Hamilton-Jacobi equations forced by additive noise, SIAM J. Math. Anal., 37 (2005), 777-796 (electronic).doi: 10.1137/040611896.

    [12]

    W. E, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224 (2001), 83-106.doi: 10.1007/s002201224083.

    [13]

    W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. of Math. (2), 151 (2000), 877-960.doi: 10.2307/121126.

    [14]

    F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations, Comm. Math. Phys., 172 (1995), 119-141.doi: 10.1007/BF02104513.

    [15]

    T. Girya and I. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Mat. Sb., 186 (1995), 29-46.doi: 10.1070/SM1995v186n01ABEH000002.

    [16]

    M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36 (2008), 2050-2091.doi: 10.1214/08-AOP392.

    [17]

    A. Haraux, Two remarks on hyperbolic dissipative problems, In Nonlinear partial differential equations and their applications. Collège de France seminar, Vol. VII (Paris, 1983-1984), Res. Notes in Math., Pitman, Boston, MA, 122 (1985), 161-179.

    [18]

    R. Iturriaga and K. Khanin, Burgers turbulence and random Lagrangian systems, Comm. Math. Phys., 232 (2003), 377-428.

    [19]

    S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension, Stochastic Partial Differential Equations: Analysis and Computations, 1 (2013), 389-423.doi: 10.1007/s40072-013-0010-6.

    [20]

    S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures, Comm. Math. Phys., 213 (2000), 291-330.doi: 10.1007/s002200000237.

    [21]

    S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge University Press, Cambridge, 2012.doi: 10.1017/CBO9781139137119.

    [22]

    J.-L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.

    [23]

    C. Mueller, Coupling and invariant measures for the heat equation with noise, Ann. Probab., 21 (1993), 2189-2199.doi: 10.1214/aop/1176989016.

    [24]

    C. Odasso, Exponential mixing for stochastic PDEs: The non-additive case, Probab. Theory Related Fields, 140 (2008), 41-82.doi: 10.1007/s00440-007-0057-2.

    [25]

    A. Shirikyan, Law of large numbers and central limit theorem for randomly forced PDE's, Probab. Theory Related Fields, 134 (2006), 215-247.doi: 10.1007/s00440-005-0427-6.

    [26]

    A. Shirikyan, Exponential mixing for randomly forced partial differential equations: Method of coupling, In Instability in models connected with fluid flows. II, Int. Math. Ser. (N. Y.), pages. Springer, New York, 7 (2008), 155-188.doi: 10.1007/978-0-387-75219-8_4.

    [27]

    M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk, 34 (1979), 135-210.

    [28]

    S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal, 3 (2004), 921-934.doi: 10.3934/cpaa.2004.3.921.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return