December  2014, 3(4): 645-670. doi: 10.3934/eect.2014.3.645

Exponential mixing for the white-forced damped nonlinear wave equation

1. 

Department of Mathematics, CNRS UMR 8088, University of Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95300 Cergy-Pontoise, France

Received  April 2014 Revised  September 2014 Published  October 2014

The paper is devoted to studying the stochastic nonlinear wave (NLW) equation $$ \partial_t^2 u + \gamma \partial_t u - \triangle u + f(u)=h(x)+\eta(t,x) $$ in a bounded domain $D\subset\mathbb{R}^3$. The equation is supplemented with the Dirichlet boundary condition. Here $f$ is a nonlinear term, $h(x)$ is a function in $H^1_0(D)$ and $\eta(t,x)$ is a non-degenerate white noise. We show that the Markov process associated with the flow $\xi_u(t)=[u(t),\dot u (t)]$ has a unique stationary measure $\mu$, and the law of any solution converges to $\mu$ with exponential rate in the dual-Lipschitz norm.
Citation: Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing, (1992). Google Scholar

[2]

Y. Bakhtin, E. Cator and K. Khanin, Space-time stationary solutions for the Burgers equation,, J. Amer. Math. Soc., 27 (2014), 193. doi: 10.1090/S0894-0347-2013-00773-0. Google Scholar

[3]

V. Barbu and G. Da Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125. doi: 10.1007/s00245-002-0744-4. Google Scholar

[4]

J. Bricmont, A. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics,, Comm. Math. Phys., 230 (2002), 87. doi: 10.1007/s00220-002-0708-1. Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, volume 49 of AMS Coll. Publ., AMS, (2002). Google Scholar

[6]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[7]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511662829. Google Scholar

[8]

A. Debussche, Ergodicity results for the stochastic Navier-Stokes equations: An introduction,, In Topics in Mathematical Fluid Mechanics, 2073 (2013), 23. doi: 10.1007/978-3-642-36297-2_2. Google Scholar

[9]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317. doi: 10.1007/s00028-005-0195-x. Google Scholar

[10]

A. Debussche and J. Vovelle, Invariant measure of scalar first-order conservation laws with stochastic forcing,, , (). Google Scholar

[11]

N. Dirr and P. Souganidis, Large-time behavior for viscous and nonviscous Hamilton-Jacobi equations forced by additive noise,, SIAM J. Math. Anal., 37 (2005), 777. doi: 10.1137/040611896. Google Scholar

[12]

W. E, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation,, Comm. Math. Phys., 224 (2001), 83. doi: 10.1007/s002201224083. Google Scholar

[13]

W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing,, Ann. of Math. (2), 151 (2000), 877. doi: 10.2307/121126. Google Scholar

[14]

F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations,, Comm. Math. Phys., 172 (1995), 119. doi: 10.1007/BF02104513. Google Scholar

[15]

T. Girya and I. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems,, Mat. Sb., 186 (1995), 29. doi: 10.1070/SM1995v186n01ABEH000002. Google Scholar

[16]

M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations,, Ann. Probab., 36 (2008), 2050. doi: 10.1214/08-AOP392. Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems,, In Nonlinear partial differential equations and their applications. Collège de France seminar, 122 (1985), 1983. Google Scholar

[18]

R. Iturriaga and K. Khanin, Burgers turbulence and random Lagrangian systems,, Comm. Math. Phys., 232 (2003), 377. Google Scholar

[19]

S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension,, Stochastic Partial Differential Equations: Analysis and Computations, 1 (2013), 389. doi: 10.1007/s40072-013-0010-6. Google Scholar

[20]

S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures,, Comm. Math. Phys., 213 (2000), 291. doi: 10.1007/s002200000237. Google Scholar

[21]

S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence,, Cambridge University Press, (2012). doi: 10.1017/CBO9781139137119. Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires,, Dunod; Gauthier-Villars, (1969). Google Scholar

[23]

C. Mueller, Coupling and invariant measures for the heat equation with noise,, Ann. Probab., 21 (1993), 2189. doi: 10.1214/aop/1176989016. Google Scholar

[24]

C. Odasso, Exponential mixing for stochastic PDEs: The non-additive case,, Probab. Theory Related Fields, 140 (2008), 41. doi: 10.1007/s00440-007-0057-2. Google Scholar

[25]

A. Shirikyan, Law of large numbers and central limit theorem for randomly forced PDE's,, Probab. Theory Related Fields, 134 (2006), 215. doi: 10.1007/s00440-005-0427-6. Google Scholar

[26]

A. Shirikyan, Exponential mixing for randomly forced partial differential equations: Method of coupling,, In Instability in models connected with fluid flows. II, 7 (2008), 155. doi: 10.1007/978-0-387-75219-8_4. Google Scholar

[27]

M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics,, Uspekhi Mat. Nauk, 34 (1979), 135. Google Scholar

[28]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal, 3 (2004), 921. doi: 10.3934/cpaa.2004.3.921. Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing, (1992). Google Scholar

[2]

Y. Bakhtin, E. Cator and K. Khanin, Space-time stationary solutions for the Burgers equation,, J. Amer. Math. Soc., 27 (2014), 193. doi: 10.1090/S0894-0347-2013-00773-0. Google Scholar

[3]

V. Barbu and G. Da Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125. doi: 10.1007/s00245-002-0744-4. Google Scholar

[4]

J. Bricmont, A. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics,, Comm. Math. Phys., 230 (2002), 87. doi: 10.1007/s00220-002-0708-1. Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, volume 49 of AMS Coll. Publ., AMS, (2002). Google Scholar

[6]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[7]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511662829. Google Scholar

[8]

A. Debussche, Ergodicity results for the stochastic Navier-Stokes equations: An introduction,, In Topics in Mathematical Fluid Mechanics, 2073 (2013), 23. doi: 10.1007/978-3-642-36297-2_2. Google Scholar

[9]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317. doi: 10.1007/s00028-005-0195-x. Google Scholar

[10]

A. Debussche and J. Vovelle, Invariant measure of scalar first-order conservation laws with stochastic forcing,, , (). Google Scholar

[11]

N. Dirr and P. Souganidis, Large-time behavior for viscous and nonviscous Hamilton-Jacobi equations forced by additive noise,, SIAM J. Math. Anal., 37 (2005), 777. doi: 10.1137/040611896. Google Scholar

[12]

W. E, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation,, Comm. Math. Phys., 224 (2001), 83. doi: 10.1007/s002201224083. Google Scholar

[13]

W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing,, Ann. of Math. (2), 151 (2000), 877. doi: 10.2307/121126. Google Scholar

[14]

F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations,, Comm. Math. Phys., 172 (1995), 119. doi: 10.1007/BF02104513. Google Scholar

[15]

T. Girya and I. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems,, Mat. Sb., 186 (1995), 29. doi: 10.1070/SM1995v186n01ABEH000002. Google Scholar

[16]

M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations,, Ann. Probab., 36 (2008), 2050. doi: 10.1214/08-AOP392. Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems,, In Nonlinear partial differential equations and their applications. Collège de France seminar, 122 (1985), 1983. Google Scholar

[18]

R. Iturriaga and K. Khanin, Burgers turbulence and random Lagrangian systems,, Comm. Math. Phys., 232 (2003), 377. Google Scholar

[19]

S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension,, Stochastic Partial Differential Equations: Analysis and Computations, 1 (2013), 389. doi: 10.1007/s40072-013-0010-6. Google Scholar

[20]

S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures,, Comm. Math. Phys., 213 (2000), 291. doi: 10.1007/s002200000237. Google Scholar

[21]

S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence,, Cambridge University Press, (2012). doi: 10.1017/CBO9781139137119. Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires,, Dunod; Gauthier-Villars, (1969). Google Scholar

[23]

C. Mueller, Coupling and invariant measures for the heat equation with noise,, Ann. Probab., 21 (1993), 2189. doi: 10.1214/aop/1176989016. Google Scholar

[24]

C. Odasso, Exponential mixing for stochastic PDEs: The non-additive case,, Probab. Theory Related Fields, 140 (2008), 41. doi: 10.1007/s00440-007-0057-2. Google Scholar

[25]

A. Shirikyan, Law of large numbers and central limit theorem for randomly forced PDE's,, Probab. Theory Related Fields, 134 (2006), 215. doi: 10.1007/s00440-005-0427-6. Google Scholar

[26]

A. Shirikyan, Exponential mixing for randomly forced partial differential equations: Method of coupling,, In Instability in models connected with fluid flows. II, 7 (2008), 155. doi: 10.1007/978-0-387-75219-8_4. Google Scholar

[27]

M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics,, Uspekhi Mat. Nauk, 34 (1979), 135. Google Scholar

[28]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal, 3 (2004), 921. doi: 10.3934/cpaa.2004.3.921. Google Scholar

[1]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[2]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[3]

Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61

[4]

Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011

[5]

Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713

[6]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of $ {\rm{PSL}}(2, \mathbb{R})$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[7]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[8]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[9]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[10]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[11]

Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic & Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041

[12]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[13]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[14]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[15]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[16]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[17]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[18]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[19]

Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935

[20]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]