December  2014, 3(4): 645-670. doi: 10.3934/eect.2014.3.645

Exponential mixing for the white-forced damped nonlinear wave equation

1. 

Department of Mathematics, CNRS UMR 8088, University of Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95300 Cergy-Pontoise, France

Received  April 2014 Revised  September 2014 Published  October 2014

The paper is devoted to studying the stochastic nonlinear wave (NLW) equation $$ \partial_t^2 u + \gamma \partial_t u - \triangle u + f(u)=h(x)+\eta(t,x) $$ in a bounded domain $D\subset\mathbb{R}^3$. The equation is supplemented with the Dirichlet boundary condition. Here $f$ is a nonlinear term, $h(x)$ is a function in $H^1_0(D)$ and $\eta(t,x)$ is a non-degenerate white noise. We show that the Markov process associated with the flow $\xi_u(t)=[u(t),\dot u (t)]$ has a unique stationary measure $\mu$, and the law of any solution converges to $\mu$ with exponential rate in the dual-Lipschitz norm.
Citation: Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing, (1992).   Google Scholar

[2]

Y. Bakhtin, E. Cator and K. Khanin, Space-time stationary solutions for the Burgers equation,, J. Amer. Math. Soc., 27 (2014), 193.  doi: 10.1090/S0894-0347-2013-00773-0.  Google Scholar

[3]

V. Barbu and G. Da Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125.  doi: 10.1007/s00245-002-0744-4.  Google Scholar

[4]

J. Bricmont, A. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics,, Comm. Math. Phys., 230 (2002), 87.  doi: 10.1007/s00220-002-0708-1.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, volume 49 of AMS Coll. Publ., AMS, (2002).   Google Scholar

[6]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[7]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511662829.  Google Scholar

[8]

A. Debussche, Ergodicity results for the stochastic Navier-Stokes equations: An introduction,, In Topics in Mathematical Fluid Mechanics, 2073 (2013), 23.  doi: 10.1007/978-3-642-36297-2_2.  Google Scholar

[9]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317.  doi: 10.1007/s00028-005-0195-x.  Google Scholar

[10]

A. Debussche and J. Vovelle, Invariant measure of scalar first-order conservation laws with stochastic forcing,, , ().   Google Scholar

[11]

N. Dirr and P. Souganidis, Large-time behavior for viscous and nonviscous Hamilton-Jacobi equations forced by additive noise,, SIAM J. Math. Anal., 37 (2005), 777.  doi: 10.1137/040611896.  Google Scholar

[12]

W. E, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation,, Comm. Math. Phys., 224 (2001), 83.  doi: 10.1007/s002201224083.  Google Scholar

[13]

W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing,, Ann. of Math. (2), 151 (2000), 877.  doi: 10.2307/121126.  Google Scholar

[14]

F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations,, Comm. Math. Phys., 172 (1995), 119.  doi: 10.1007/BF02104513.  Google Scholar

[15]

T. Girya and I. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems,, Mat. Sb., 186 (1995), 29.  doi: 10.1070/SM1995v186n01ABEH000002.  Google Scholar

[16]

M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations,, Ann. Probab., 36 (2008), 2050.  doi: 10.1214/08-AOP392.  Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems,, In Nonlinear partial differential equations and their applications. Collège de France seminar, 122 (1985), 1983.   Google Scholar

[18]

R. Iturriaga and K. Khanin, Burgers turbulence and random Lagrangian systems,, Comm. Math. Phys., 232 (2003), 377.   Google Scholar

[19]

S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension,, Stochastic Partial Differential Equations: Analysis and Computations, 1 (2013), 389.  doi: 10.1007/s40072-013-0010-6.  Google Scholar

[20]

S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures,, Comm. Math. Phys., 213 (2000), 291.  doi: 10.1007/s002200000237.  Google Scholar

[21]

S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence,, Cambridge University Press, (2012).  doi: 10.1017/CBO9781139137119.  Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires,, Dunod; Gauthier-Villars, (1969).   Google Scholar

[23]

C. Mueller, Coupling and invariant measures for the heat equation with noise,, Ann. Probab., 21 (1993), 2189.  doi: 10.1214/aop/1176989016.  Google Scholar

[24]

C. Odasso, Exponential mixing for stochastic PDEs: The non-additive case,, Probab. Theory Related Fields, 140 (2008), 41.  doi: 10.1007/s00440-007-0057-2.  Google Scholar

[25]

A. Shirikyan, Law of large numbers and central limit theorem for randomly forced PDE's,, Probab. Theory Related Fields, 134 (2006), 215.  doi: 10.1007/s00440-005-0427-6.  Google Scholar

[26]

A. Shirikyan, Exponential mixing for randomly forced partial differential equations: Method of coupling,, In Instability in models connected with fluid flows. II, 7 (2008), 155.  doi: 10.1007/978-0-387-75219-8_4.  Google Scholar

[27]

M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics,, Uspekhi Mat. Nauk, 34 (1979), 135.   Google Scholar

[28]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal, 3 (2004), 921.  doi: 10.3934/cpaa.2004.3.921.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland Publishing, (1992).   Google Scholar

[2]

Y. Bakhtin, E. Cator and K. Khanin, Space-time stationary solutions for the Burgers equation,, J. Amer. Math. Soc., 27 (2014), 193.  doi: 10.1090/S0894-0347-2013-00773-0.  Google Scholar

[3]

V. Barbu and G. Da Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125.  doi: 10.1007/s00245-002-0744-4.  Google Scholar

[4]

J. Bricmont, A. Kupiainen and R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics,, Comm. Math. Phys., 230 (2002), 87.  doi: 10.1007/s00220-002-0708-1.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, volume 49 of AMS Coll. Publ., AMS, (2002).   Google Scholar

[6]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[7]

G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996).  doi: 10.1017/CBO9780511662829.  Google Scholar

[8]

A. Debussche, Ergodicity results for the stochastic Navier-Stokes equations: An introduction,, In Topics in Mathematical Fluid Mechanics, 2073 (2013), 23.  doi: 10.1007/978-3-642-36297-2_2.  Google Scholar

[9]

A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation,, J. Evol. Equ., 5 (2005), 317.  doi: 10.1007/s00028-005-0195-x.  Google Scholar

[10]

A. Debussche and J. Vovelle, Invariant measure of scalar first-order conservation laws with stochastic forcing,, , ().   Google Scholar

[11]

N. Dirr and P. Souganidis, Large-time behavior for viscous and nonviscous Hamilton-Jacobi equations forced by additive noise,, SIAM J. Math. Anal., 37 (2005), 777.  doi: 10.1137/040611896.  Google Scholar

[12]

W. E, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation,, Comm. Math. Phys., 224 (2001), 83.  doi: 10.1007/s002201224083.  Google Scholar

[13]

W. E, K. Khanin, A. Mazel and Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing,, Ann. of Math. (2), 151 (2000), 877.  doi: 10.2307/121126.  Google Scholar

[14]

F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations,, Comm. Math. Phys., 172 (1995), 119.  doi: 10.1007/BF02104513.  Google Scholar

[15]

T. Girya and I. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems,, Mat. Sb., 186 (1995), 29.  doi: 10.1070/SM1995v186n01ABEH000002.  Google Scholar

[16]

M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations,, Ann. Probab., 36 (2008), 2050.  doi: 10.1214/08-AOP392.  Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems,, In Nonlinear partial differential equations and their applications. Collège de France seminar, 122 (1985), 1983.   Google Scholar

[18]

R. Iturriaga and K. Khanin, Burgers turbulence and random Lagrangian systems,, Comm. Math. Phys., 232 (2003), 377.   Google Scholar

[19]

S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension,, Stochastic Partial Differential Equations: Analysis and Computations, 1 (2013), 389.  doi: 10.1007/s40072-013-0010-6.  Google Scholar

[20]

S. Kuksin and A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures,, Comm. Math. Phys., 213 (2000), 291.  doi: 10.1007/s002200000237.  Google Scholar

[21]

S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence,, Cambridge University Press, (2012).  doi: 10.1017/CBO9781139137119.  Google Scholar

[22]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires,, Dunod; Gauthier-Villars, (1969).   Google Scholar

[23]

C. Mueller, Coupling and invariant measures for the heat equation with noise,, Ann. Probab., 21 (1993), 2189.  doi: 10.1214/aop/1176989016.  Google Scholar

[24]

C. Odasso, Exponential mixing for stochastic PDEs: The non-additive case,, Probab. Theory Related Fields, 140 (2008), 41.  doi: 10.1007/s00440-007-0057-2.  Google Scholar

[25]

A. Shirikyan, Law of large numbers and central limit theorem for randomly forced PDE's,, Probab. Theory Related Fields, 134 (2006), 215.  doi: 10.1007/s00440-005-0427-6.  Google Scholar

[26]

A. Shirikyan, Exponential mixing for randomly forced partial differential equations: Method of coupling,, In Instability in models connected with fluid flows. II, 7 (2008), 155.  doi: 10.1007/978-0-387-75219-8_4.  Google Scholar

[27]

M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics,, Uspekhi Mat. Nauk, 34 (1979), 135.   Google Scholar

[28]

S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent,, Commun. Pure Appl. Anal, 3 (2004), 921.  doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]