December  2014, 3(4): 681-698. doi: 10.3934/eect.2014.3.681

A one-dimensional kinetic model of plasma dynamics with a transport field

1. 

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, United States

2. 

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80002, United States

Received  January 2014 Revised  April 2014 Published  October 2014

Motivated by the fundamental model of a collisionless plasma, the Vlasov-Maxwell (VM) system, we consider a related, nonlinear system of partial differential equations in one space and one momentum dimension. As little is known regarding the regularity properties of solutions to the non-relativistic version of the (VM) equations, we study a simplified system which also lacks relativistic velocity corrections and prove local-in-time existence and uniqueness of classical solutions to the Cauchy problem. For special choices of initial data, global-in-time existence of these solutions is also shown. Finally, we provide an estimate which, independent of the choice of initial data, yields additional global-in-time regularity of the associated field.
Citation: Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations and Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681
References:
[1]

F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15. doi: 10.1007/s00205-003-0265-6.

[2]

D. Brewer and S. Pankavich, Computational Methods for a One-dimensional Plasma Model with a Transport Field, SIAM Undergraduate Research Online, 4 (2011), 81-104.

[3]

R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757. doi: 10.1002/cpa.3160420603.

[4]

P. Gerard and C. Pallard, A mean-field toy model for resonant transport, Kinet. Relat. Models, 3 (2010), 299-309. doi: 10.3934/krm.2010.3.299.

[5]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[6]

R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179. doi: 10.1002/mma.1670130207.

[7]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90. doi: 10.1007/BF00250732.

[8]

S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.

[9]

M. Kunzinger, G. Rein, R. Steinbauer and G. Teschl, On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electron. J. Differential Equations (electronic - 17 pp.), 1 (2005), 17pp.

[10]

S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics, Comm. Partial Differential Equations, 31 (2006), 349-370. doi: 10.1080/03605300500358004.

[11]

S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass, Math. Methods Appl. Sci., 30 (2007), 529-548. doi: 10.1002/mma.796.

[12]

N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics, Wiley: New York, NY, 1967.

show all references

References:
[1]

F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15. doi: 10.1007/s00205-003-0265-6.

[2]

D. Brewer and S. Pankavich, Computational Methods for a One-dimensional Plasma Model with a Transport Field, SIAM Undergraduate Research Online, 4 (2011), 81-104.

[3]

R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757. doi: 10.1002/cpa.3160420603.

[4]

P. Gerard and C. Pallard, A mean-field toy model for resonant transport, Kinet. Relat. Models, 3 (2010), 299-309. doi: 10.3934/krm.2010.3.299.

[5]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[6]

R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179. doi: 10.1002/mma.1670130207.

[7]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90. doi: 10.1007/BF00250732.

[8]

S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.

[9]

M. Kunzinger, G. Rein, R. Steinbauer and G. Teschl, On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electron. J. Differential Equations (electronic - 17 pp.), 1 (2005), 17pp.

[10]

S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics, Comm. Partial Differential Equations, 31 (2006), 349-370. doi: 10.1080/03605300500358004.

[11]

S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass, Math. Methods Appl. Sci., 30 (2007), 529-548. doi: 10.1002/mma.796.

[12]

N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics, Wiley: New York, NY, 1967.

[1]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[2]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[3]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[4]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[5]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic and Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[6]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[7]

Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022010

[8]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[9]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[10]

Seung-Yeal Ha, Shi Jin, Jinwook Jung. A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks and Heterogeneous Media, 2019, 14 (2) : 317-340. doi: 10.3934/nhm.2019013

[11]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic and Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[12]

Sebastian Günther, Gerhard Rein. The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation. Kinetic and Related Models, 2022, 15 (4) : 681-719. doi: 10.3934/krm.2021040

[13]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[14]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic and Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[15]

Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344

[16]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[17]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[18]

Carlos Lizama, Marina Murillo-Arcila. Maximal regularity for time-stepping schemes arising from convolution quadrature of non-local in time equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022032

[19]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[20]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]