-
Previous Article
On the threshold for Kato's selfadjointness problem and its $L^p$-generalization
- EECT Home
- This Issue
-
Next Article
On a class of elliptic operators with unbounded diffusion coefficients
A one-dimensional kinetic model of plasma dynamics with a transport field
1. | Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, United States |
2. | Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80002, United States |
References:
[1] |
F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system,, Arch. Ration. Mech. Anal., 170 (2003), 1.
doi: 10.1007/s00205-003-0265-6. |
[2] |
D. Brewer and S. Pankavich, Computational Methods for a One-dimensional Plasma Model with a Transport Field,, SIAM Undergraduate Research Online, 4 (2011), 81. Google Scholar |
[3] |
R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729.
doi: 10.1002/cpa.3160420603. |
[4] |
P. Gerard and C. Pallard, A mean-field toy model for resonant transport,, Kinet. Relat. Models, 3 (2010), 299.
doi: 10.3934/krm.2010.3.299. |
[5] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, (1996).
doi: 10.1137/1.9781611971477. |
[6] |
R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system,, Math. Methods Appl. Sci., 13 (1990), 169.
doi: 10.1002/mma.1670130207. |
[7] |
R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities,, Arch. Rational Mech. Anal., 92 (1986), 59.
doi: 10.1007/BF00250732. |
[8] |
S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system,, Commun. Pure Appl. Anal., 1 (2002), 103.
|
[9] |
M. Kunzinger, G. Rein, R. Steinbauer and G. Teschl, On classical solutions of the relativistic Vlasov-Klein-Gordon system,, Electron. J. Differential Equations (electronic - 17 pp.), 1 (2005).
|
[10] |
S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics,, Comm. Partial Differential Equations, 31 (2006), 349.
doi: 10.1080/03605300500358004. |
[11] |
S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass,, Math. Methods Appl. Sci., 30 (2007), 529.
doi: 10.1002/mma.796. |
[12] |
N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics,, Wiley: New York, (1967). Google Scholar |
show all references
References:
[1] |
F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system,, Arch. Ration. Mech. Anal., 170 (2003), 1.
doi: 10.1007/s00205-003-0265-6. |
[2] |
D. Brewer and S. Pankavich, Computational Methods for a One-dimensional Plasma Model with a Transport Field,, SIAM Undergraduate Research Online, 4 (2011), 81. Google Scholar |
[3] |
R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems,, Comm. Pure Appl. Math., 42 (1989), 729.
doi: 10.1002/cpa.3160420603. |
[4] |
P. Gerard and C. Pallard, A mean-field toy model for resonant transport,, Kinet. Relat. Models, 3 (2010), 299.
doi: 10.3934/krm.2010.3.299. |
[5] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, (1996).
doi: 10.1137/1.9781611971477. |
[6] |
R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system,, Math. Methods Appl. Sci., 13 (1990), 169.
doi: 10.1002/mma.1670130207. |
[7] |
R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities,, Arch. Rational Mech. Anal., 92 (1986), 59.
doi: 10.1007/BF00250732. |
[8] |
S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system,, Commun. Pure Appl. Anal., 1 (2002), 103.
|
[9] |
M. Kunzinger, G. Rein, R. Steinbauer and G. Teschl, On classical solutions of the relativistic Vlasov-Klein-Gordon system,, Electron. J. Differential Equations (electronic - 17 pp.), 1 (2005).
|
[10] |
S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics,, Comm. Partial Differential Equations, 31 (2006), 349.
doi: 10.1080/03605300500358004. |
[11] |
S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass,, Math. Methods Appl. Sci., 30 (2007), 529.
doi: 10.1002/mma.796. |
[12] |
N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics,, Wiley: New York, (1967). Google Scholar |
[1] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011 |
[2] |
Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379 |
[3] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[4] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[5] |
Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003 |
[6] |
Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 |
[7] |
Seung-Yeal Ha, Shi Jin, Jinwook Jung. A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks & Heterogeneous Media, 2019, 14 (2) : 317-340. doi: 10.3934/nhm.2019013 |
[8] |
Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787 |
[9] |
Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591 |
[10] |
Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027 |
[11] |
Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023 |
[12] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[13] |
Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79 |
[14] |
Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429 |
[15] |
Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621 |
[16] |
Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483 |
[17] |
Xie Li, Zhaoyin Xiang. Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1465-1480. doi: 10.3934/cpaa.2014.13.1465 |
[18] |
Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311 |
[19] |
Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure & Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031 |
[20] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
2018 Impact Factor: 1.048
Tools
Metrics
Other articles
by authors
[Back to Top]