Advanced Search
Article Contents
Article Contents

A one-dimensional kinetic model of plasma dynamics with a transport field

Abstract Related Papers Cited by
  • Motivated by the fundamental model of a collisionless plasma, the Vlasov-Maxwell (VM) system, we consider a related, nonlinear system of partial differential equations in one space and one momentum dimension. As little is known regarding the regularity properties of solutions to the non-relativistic version of the (VM) equations, we study a simplified system which also lacks relativistic velocity corrections and prove local-in-time existence and uniqueness of classical solutions to the Cauchy problem. For special choices of initial data, global-in-time existence of these solutions is also shown. Finally, we provide an estimate which, independent of the choice of initial data, yields additional global-in-time regularity of the associated field.
    Mathematics Subject Classification: Primary: 35L60, 35Q83; Secondary: 82C22, 82D10.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.doi: 10.1007/s00205-003-0265-6.


    D. Brewer and S. Pankavich, Computational Methods for a One-dimensional Plasma Model with a Transport Field, SIAM Undergraduate Research Online, 4 (2011), 81-104.


    R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.doi: 10.1002/cpa.3160420603.


    P. Gerard and C. Pallard, A mean-field toy model for resonant transport, Kinet. Relat. Models, 3 (2010), 299-309.doi: 10.3934/krm.2010.3.299.


    R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 1996.doi: 10.1137/1.9781611971477.


    R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179.doi: 10.1002/mma.1670130207.


    R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.doi: 10.1007/BF00250732.


    S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.


    M. Kunzinger, G. Rein, R. Steinbauer and G. Teschl, On classical solutions of the relativistic Vlasov-Klein-Gordon system, Electron. J. Differential Equations (electronic - 17 pp.), 1 (2005), 17pp.


    S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics, Comm. Partial Differential Equations, 31 (2006), 349-370.doi: 10.1080/03605300500358004.


    S. Pankavich, Local existence for the one-dimensional Vlasov-Poisson system with infinite mass, Math. Methods Appl. Sci., 30 (2007), 529-548.doi: 10.1002/mma.796.


    N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics, Wiley: New York, NY, 1967.

  • 加载中

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint