December  2014, 3(4): 699-711. doi: 10.3934/eect.2014.3.699

On the threshold for Kato's selfadjointness problem and its $L^p$-generalization

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, Japan

Received  March 2014 Revised  May 2014 Published  October 2014

In this paper the selfadjointness problem for Schrödinger operators $Au = -div(a\nabla u)+Vu$ in $\mathbb{R}^N$ $(N\in\mathbb{N})$ posed by Kato in [5] and its $L^p$-generalization ($1< p <\infty$) are dealt with. Under $|a(x)|\leq k(1+|x|)^{l+2}$ and $V(x)\geq c|x|^{l}$, the precise lower bounds of $c$ for (essential) selfadjointness in $L^2$ and $m$-sectoriality in $L^p$ of minimal and maximal realizations of $A$ are given. The proof is based on the method in Davies [1,Example 3.5]. This result is a (negative) answer to Kato's selfadjointness problem, and asserts that the lower bounds of $c$ stated in [7,Section 5] for $p=2$ and in [12,Section 3] for general $p$, are precise.
Citation: Motohiro Sobajima. On the threshold for Kato's selfadjointness problem and its $L^p$-generalization. Evolution Equations & Control Theory, 2014, 3 (4) : 699-711. doi: 10.3934/eect.2014.3.699
References:
[1]

E. B. Davies, $L^{1}$ properties of second order elliptic operators,, Bull. London Math. Soc., 17 (1985), 417.  doi: 10.1112/blms/17.5.417.  Google Scholar

[2]

A. Devinatz, Essential self-adjointness of Schrödinger-type operators,, J. Functional Analysis, 25 (1977), 58.  doi: 10.1016/0022-1236(77)90032-5.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Revised Third Printing, (1998).   Google Scholar

[4]

D. M. Gitman, I. V. Tyutin and B. L. Voronov, Self-adjoint Extensions in Quantum Mechanics, General Theory and Applications to Schrodinger and Dirac Equations with Singular Potentials,, Progress in Mathematical Physics 62, 62 (2012).  doi: 10.1007/978-0-8176-4662-2.  Google Scholar

[5]

T. Kato, Remarks on the selfadjointness and related problems for differential operators,, Spectral theory of differential operators (Birmingham, 55 (1981), 253.  doi: 10.1016/S0304-0208(08)71641-4.  Google Scholar

[6]

G. Metafune, N. Okazawa, M. Sobajima and C. Spina, Scale invariant elliptic operators with singular coefficients,, preprint, ().   Google Scholar

[7]

G. Metafune, D. Pallara, P. J. Rabier and R. Schnaubelt, Uniqueness for elliptic operators on $L^p(\mathbbR^N)$ with unbounded coefficients,, Forum Math., 22 (2010), 583.  doi: 10.1515/forum.2010.031.  Google Scholar

[8]

G. Metafune and C. Spina, Elliptic operators with unbounded diffusion coefficients in $L^p$ spaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 303.  doi: 10.2422/2036-2145.201010_012.  Google Scholar

[9]

N. Okazawa, Sectorialness of second order elliptic operators in divergence form,, Proc. Amer. Math. Soc., 113 (1991), 701.  doi: 10.1090/S0002-9939-1991-1072347-4.  Google Scholar

[10]

B. Simon, Schrödinger semigroups,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447.  doi: 10.1090/S0273-0979-1982-15041-8.  Google Scholar

[11]

M. Sobajima, $L^p$-theory for second-order elliptic operators with unbounded coefficients,, J. Evol. Equ., 12 (2012), 957.  doi: 10.1007/s00028-012-0163-1.  Google Scholar

[12]

M. Sobajima, $L^p$-theory for second-order elliptic operators with unbounded coefficients in an endpoint class,, J. Evol. Equ., 14 (2014), 461.  doi: 10.1007/s00028-014-0223-9.  Google Scholar

show all references

References:
[1]

E. B. Davies, $L^{1}$ properties of second order elliptic operators,, Bull. London Math. Soc., 17 (1985), 417.  doi: 10.1112/blms/17.5.417.  Google Scholar

[2]

A. Devinatz, Essential self-adjointness of Schrödinger-type operators,, J. Functional Analysis, 25 (1977), 58.  doi: 10.1016/0022-1236(77)90032-5.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Revised Third Printing, (1998).   Google Scholar

[4]

D. M. Gitman, I. V. Tyutin and B. L. Voronov, Self-adjoint Extensions in Quantum Mechanics, General Theory and Applications to Schrodinger and Dirac Equations with Singular Potentials,, Progress in Mathematical Physics 62, 62 (2012).  doi: 10.1007/978-0-8176-4662-2.  Google Scholar

[5]

T. Kato, Remarks on the selfadjointness and related problems for differential operators,, Spectral theory of differential operators (Birmingham, 55 (1981), 253.  doi: 10.1016/S0304-0208(08)71641-4.  Google Scholar

[6]

G. Metafune, N. Okazawa, M. Sobajima and C. Spina, Scale invariant elliptic operators with singular coefficients,, preprint, ().   Google Scholar

[7]

G. Metafune, D. Pallara, P. J. Rabier and R. Schnaubelt, Uniqueness for elliptic operators on $L^p(\mathbbR^N)$ with unbounded coefficients,, Forum Math., 22 (2010), 583.  doi: 10.1515/forum.2010.031.  Google Scholar

[8]

G. Metafune and C. Spina, Elliptic operators with unbounded diffusion coefficients in $L^p$ spaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 303.  doi: 10.2422/2036-2145.201010_012.  Google Scholar

[9]

N. Okazawa, Sectorialness of second order elliptic operators in divergence form,, Proc. Amer. Math. Soc., 113 (1991), 701.  doi: 10.1090/S0002-9939-1991-1072347-4.  Google Scholar

[10]

B. Simon, Schrödinger semigroups,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447.  doi: 10.1090/S0273-0979-1982-15041-8.  Google Scholar

[11]

M. Sobajima, $L^p$-theory for second-order elliptic operators with unbounded coefficients,, J. Evol. Equ., 12 (2012), 957.  doi: 10.1007/s00028-012-0163-1.  Google Scholar

[12]

M. Sobajima, $L^p$-theory for second-order elliptic operators with unbounded coefficients in an endpoint class,, J. Evol. Equ., 14 (2014), 461.  doi: 10.1007/s00028-014-0223-9.  Google Scholar

[1]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[10]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[17]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[18]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[19]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[20]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]