December  2014, 3(4): 713-738. doi: 10.3934/eect.2014.3.713

The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system

1. 

ALHOSN University, Mathematics and Natural Sciences Department, PO Box 38772, Abu Dhabi, United Arab Emirates, United Arab Emirates

Received  July 2014 Revised  September 2014 Published  October 2014

In this paper, we consider the Bresse system with frictional damping terms. We investigated the relationship between the frictional damping terms, the wave speeds of propagation and their influence on the decay rate of the solution. We proved that in many cases the solution enjoys the decay property of regularity-loss type. We introduced a new assumption on the wave speeds that controls the behavior of the solution of the Bresse system. In addition, when the coefficient $l $ goes to zero, we showed that the solution of the Bresse system decays faster than the one of the Timoshenko system. This result seems to be the first one to give the decay rate of the solution of the Bresse system in unbounded domain.
Citation: Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713
References:
[1]

F. Alabau Boussouira, J. E. Muñoz Rivera and D. S. Almeida Júnior, Stability to weak dissipative Bresse system,, J. Math. Anal. Appl., 374 (2011), 481.  doi: 10.1016/j.jmaa.2010.07.046.  Google Scholar

[2]

M. M. Cavalcanti, V. N Domingos Cavalcanti, F. A Falcão Nascimento, I Lasiecka and J. H Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping,, Z. Angew. Math. Phys., (2013), 1.  doi: 10.1007/s00033-013-0380-7.  Google Scholar

[3]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system,, Appl. Math. Lett., 25 (2012), 600.  doi: 10.1016/j.aml.2011.09.067.  Google Scholar

[4]

L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, IMA Journal of Applied Mathematics, 75 (2010), 881.  doi: 10.1093/imamat/hxq038.  Google Scholar

[5]

M. Grobbelaar-Van Dalsen, Polynomial decay rate of a thermoelastic mindlin-Timoshenko plate model with dirichlet boundary conditions,, Z. Angew. Math. Phys., (2013), 1.  doi: 10.1007/s00033-013-0391-4.  Google Scholar

[6]

K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system,, Math. Mod. Meth. Appl. Sci., 18 (2008), 647.  doi: 10.1142/S0218202508002802.  Google Scholar

[7]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system,, Math. Mod. Meth. Appl. Sci., 18 (2008), 1001.  doi: 10.1142/S0218202508002930.  Google Scholar

[8]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system,, Z. Angew. Math. Phys., 60 (2009), 54.  doi: 10.1007/s00033-008-6122-6.  Google Scholar

[9]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci. Kyoto. Univ, 12 (1976), 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[10]

L. Nirenberg, On elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115.   Google Scholar

[11]

N. Noun and A. Wehbe, Stabilisation faible interne locale de système élastique de Bresse,, C. R. Math. Acad. Sci. Paris, 350 (2012), 493.  doi: 10.1016/j.crma.2012.04.003.  Google Scholar

[12]

R. Racke and B. Said-Houari, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., 71 (2013), 229.  doi: 10.1090/S0033-569X-2012-01280-8.  Google Scholar

[13]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings,, Appl. Math. Letters, 18 (2005), 535.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[14]

M. L. Santos, A. Soufyane and D. S. A. Júnior, Asymptotic behavior to bresse system with past history,, Quarterly of Applied Mathematics, (2013).   Google Scholar

[15]

J. A. Soriano, J. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping,, J. Math. Anal. Appl., 387 (2012), 284.  doi: 10.1016/j.jmaa.2011.08.072.  Google Scholar

show all references

References:
[1]

F. Alabau Boussouira, J. E. Muñoz Rivera and D. S. Almeida Júnior, Stability to weak dissipative Bresse system,, J. Math. Anal. Appl., 374 (2011), 481.  doi: 10.1016/j.jmaa.2010.07.046.  Google Scholar

[2]

M. M. Cavalcanti, V. N Domingos Cavalcanti, F. A Falcão Nascimento, I Lasiecka and J. H Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping,, Z. Angew. Math. Phys., (2013), 1.  doi: 10.1007/s00033-013-0380-7.  Google Scholar

[3]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system,, Appl. Math. Lett., 25 (2012), 600.  doi: 10.1016/j.aml.2011.09.067.  Google Scholar

[4]

L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, IMA Journal of Applied Mathematics, 75 (2010), 881.  doi: 10.1093/imamat/hxq038.  Google Scholar

[5]

M. Grobbelaar-Van Dalsen, Polynomial decay rate of a thermoelastic mindlin-Timoshenko plate model with dirichlet boundary conditions,, Z. Angew. Math. Phys., (2013), 1.  doi: 10.1007/s00033-013-0391-4.  Google Scholar

[6]

K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system,, Math. Mod. Meth. Appl. Sci., 18 (2008), 647.  doi: 10.1142/S0218202508002802.  Google Scholar

[7]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system,, Math. Mod. Meth. Appl. Sci., 18 (2008), 1001.  doi: 10.1142/S0218202508002930.  Google Scholar

[8]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system,, Z. Angew. Math. Phys., 60 (2009), 54.  doi: 10.1007/s00033-008-6122-6.  Google Scholar

[9]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci. Kyoto. Univ, 12 (1976), 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[10]

L. Nirenberg, On elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115.   Google Scholar

[11]

N. Noun and A. Wehbe, Stabilisation faible interne locale de système élastique de Bresse,, C. R. Math. Acad. Sci. Paris, 350 (2012), 493.  doi: 10.1016/j.crma.2012.04.003.  Google Scholar

[12]

R. Racke and B. Said-Houari, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., 71 (2013), 229.  doi: 10.1090/S0033-569X-2012-01280-8.  Google Scholar

[13]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings,, Appl. Math. Letters, 18 (2005), 535.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[14]

M. L. Santos, A. Soufyane and D. S. A. Júnior, Asymptotic behavior to bresse system with past history,, Quarterly of Applied Mathematics, (2013).   Google Scholar

[15]

J. A. Soriano, J. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping,, J. Math. Anal. Appl., 387 (2012), 284.  doi: 10.1016/j.jmaa.2011.08.072.  Google Scholar

[1]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[2]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[5]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[6]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[7]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[8]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[9]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[10]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[11]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[12]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[13]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[14]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[15]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[16]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[18]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[19]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[20]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]