\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundary feedback stabilization of a chain of serially connected strings

Abstract Related Papers Cited by
  • We consider $N$ strings connected one to another and forming a particular network which is a chain of strings. We study a stabilization problem and precisely we prove that the energy of the solutions of the dissipative system decays exponentially to zero when the time tends to infinity, independently of the densities of the strings. Our technique is based on a frequency domain method and a special analysis for the resolvent. Moreover, by the same approach, we study the transfer function associated to the chain of strings and the stability of the Schrödinger system.
    Mathematics Subject Classification: Primary: 35L05, 35M10; Secondary: 35R02, 47A10, 93D15, 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Ammari and S. Nicaise, Stabilization of Elastic Systems by Collocated Feedback, Lecture Notes in Mathematics, Vol. 2124, Springer-Verlag, Berlin, 2015.doi: 10.1007/978-3-319-10900-8.

    [2]

    K. Ammari, D. Mercier, V. Régnier and J. Valein, Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings, Commun. Pure Appl. Anal., 11 (2012), 785-807.doi: 10.3934/cpaa.2012.11.785.

    [3]

    K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM Journal on Control and Optimization, 39 (2000), 1160-1181.doi: 10.1137/S0363012998349315.

    [4]

    K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptotic Analysis, 28 (2001), 215-240.

    [5]

    K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings, Appl. Maths., 52 (2007), 327-343.doi: 10.1007/s10492-007-0018-1.

    [6]

    K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM Control Optim. Calc. Var., 6 (2001), 361-386.doi: 10.1051/cocv:2001114.

    [7]

    K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Diff. Integral. Equations, 17 (2004), 1395-1410.

    [8]

    K. Ammari, M. Jellouli and M. Khenissi, Stabilization of generic trees of strings, J. Dyn. Cont. Syst., 11 (2005), 177-193.doi: 10.1007/s10883-005-4169-7.

    [9]

    H. T. Banks, R. C. Smith and Y. Wang, Smart Materials Structures, Wiley, 1996.

    [10]

    J. von Below, Classical solvability of linear parabolic equations on networks, J. Diff. Eq., 72 (1988), 316-337.doi: 10.1016/0022-0396(88)90158-1.

    [11]

    W. L. Chan and B. Z. Guo, Pointwise stabilization for a chain of vibrating strings, IMA J. Math. and Information, 7 (1990), 307-315.doi: 10.1093/imamci/7.4.307.

    [12]

    G. Chen, M. Coleman and H. H. West, Pointwise stabilization in the middle of the span for second order systems, nonuniform exponential decay of solutions, SIAM J. Appl. Math., 47 (1987), 751-780.doi: 10.1137/0147052.

    [13]

    G. Chen, M. C. Delfour, A. M. Krall and G. Payre, Modeling, Stabilization and control of serially connected beams, SIAM J. Control Optim., 25 (1987), 526-546.doi: 10.1137/0325029.

    [14]

    R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in $1-d$ Flexible Multi-structures, Mathématiques & Applications, 50, Springer-Verlag, Berlin, 2006.doi: 10.1007/3-540-37726-3.

    [15]

    F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert space, Ann. Differential Equations, 1 (1985), 43-56.

    [16]

    J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston-Basel-Berlin, 1994.doi: 10.1007/978-1-4612-0273-8.

    [17]

    K.-S. Liu, F.-L. Huang and G. Chen, Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage, SIAM Journal on Applied Mathematics, 49 (1989), 1694-1707.doi: 10.1137/0149102.

    [18]

    D. Mercier and V. Régnier, Exponential stability of a network of serially connected Euler-Bernoulli beams, International Journal of Control, 87 (2014), 1266-1281.doi: 10.1080/00207179.2013.874597.

    [19]

    S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.doi: 10.3934/nhm.2007.2.425.

    [20]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [21]

    J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 248 (1984), 847-857.doi: 10.2307/1999112.

    [22]

    M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.doi: 10.1007/978-3-7643-8994-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return