March  2015, 4(1): 107-113. doi: 10.3934/eect.2015.4.107

Backward uniqueness for linearized compressible flow

1. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, United States

Received  September 2014 Revised  January 2015 Published  February 2015

We prove that a $C_0$-semigroup of operators $\exp(At)$ satisfies backward uniqueness if the resolvent of $A$ exists on a ray $z=re^{i\theta}$ in the left half plane ($\pi/2<\theta\le \pi$) and satisfies a bound $\|(A-z I)^{-1}\|\le C\exp(|z|^\alpha)$, $\alpha<1$ on this ray. The proof of this result is based on the Phragmen-Lindelöf theorem. The result is applied to the linearized compressible Navier-Stokes equations in one space dimension and to the wave equation with linear damping and absorbing boundary condition.
Citation: Michael Renardy. Backward uniqueness for linearized compressible flow. Evolution Equations & Control Theory, 2015, 4 (1) : 107-113. doi: 10.3934/eect.2015.4.107
References:
[1]

G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction, preprint,, , ().   Google Scholar

[2]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eq., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[3]

G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system,, Trans. Amer. Math. Soc., 362 (2010), 3535.  doi: 10.1090/S0002-9947-10-04851-8.  Google Scholar

[4]

S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension,, J. Diff. Eq., 257 (2014), 3813.  doi: 10.1016/j.jde.2014.07.010.  Google Scholar

[5]

H. Koch and I. Lasiecka, Backward uniqueness in linear thermoelasticity with time and space variable coefficients,, Functional Analysis and Evolution Equations, (2008), 389.  doi: 10.1007/978-3-7643-7794-6_25.  Google Scholar

[6]

I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces,, Semigroup Forum, 62 (2001), 217.  doi: 10.1007/s002330010035.  Google Scholar

show all references

References:
[1]

G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction, preprint,, , ().   Google Scholar

[2]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eq., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[3]

G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system,, Trans. Amer. Math. Soc., 362 (2010), 3535.  doi: 10.1090/S0002-9947-10-04851-8.  Google Scholar

[4]

S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension,, J. Diff. Eq., 257 (2014), 3813.  doi: 10.1016/j.jde.2014.07.010.  Google Scholar

[5]

H. Koch and I. Lasiecka, Backward uniqueness in linear thermoelasticity with time and space variable coefficients,, Functional Analysis and Evolution Equations, (2008), 389.  doi: 10.1007/978-3-7643-7794-6_25.  Google Scholar

[6]

I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces,, Semigroup Forum, 62 (2001), 217.  doi: 10.1007/s002330010035.  Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]