March  2015, 4(1): 107-113. doi: 10.3934/eect.2015.4.107

Backward uniqueness for linearized compressible flow

1. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, United States

Received  September 2014 Revised  January 2015 Published  February 2015

We prove that a $C_0$-semigroup of operators $\exp(At)$ satisfies backward uniqueness if the resolvent of $A$ exists on a ray $z=re^{i\theta}$ in the left half plane ($\pi/2<\theta\le \pi$) and satisfies a bound $\|(A-z I)^{-1}\|\le C\exp(|z|^\alpha)$, $\alpha<1$ on this ray. The proof of this result is based on the Phragmen-Lindelöf theorem. The result is applied to the linearized compressible Navier-Stokes equations in one space dimension and to the wave equation with linear damping and absorbing boundary condition.
Citation: Michael Renardy. Backward uniqueness for linearized compressible flow. Evolution Equations & Control Theory, 2015, 4 (1) : 107-113. doi: 10.3934/eect.2015.4.107
References:
[1]

G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction, preprint,, , ().   Google Scholar

[2]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eq., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[3]

G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system,, Trans. Amer. Math. Soc., 362 (2010), 3535.  doi: 10.1090/S0002-9947-10-04851-8.  Google Scholar

[4]

S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension,, J. Diff. Eq., 257 (2014), 3813.  doi: 10.1016/j.jde.2014.07.010.  Google Scholar

[5]

H. Koch and I. Lasiecka, Backward uniqueness in linear thermoelasticity with time and space variable coefficients,, Functional Analysis and Evolution Equations, (2008), 389.  doi: 10.1007/978-3-7643-7794-6_25.  Google Scholar

[6]

I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces,, Semigroup Forum, 62 (2001), 217.  doi: 10.1007/s002330010035.  Google Scholar

show all references

References:
[1]

G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction, preprint,, , ().   Google Scholar

[2]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eq., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[3]

G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system,, Trans. Amer. Math. Soc., 362 (2010), 3535.  doi: 10.1090/S0002-9947-10-04851-8.  Google Scholar

[4]

S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension,, J. Diff. Eq., 257 (2014), 3813.  doi: 10.1016/j.jde.2014.07.010.  Google Scholar

[5]

H. Koch and I. Lasiecka, Backward uniqueness in linear thermoelasticity with time and space variable coefficients,, Functional Analysis and Evolution Equations, (2008), 389.  doi: 10.1007/978-3-7643-7794-6_25.  Google Scholar

[6]

I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces,, Semigroup Forum, 62 (2001), 217.  doi: 10.1007/s002330010035.  Google Scholar

[1]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[2]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[3]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[4]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[5]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[6]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[7]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[8]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[9]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[10]

Nikolai Dokuchaev. On forward and backward SPDEs with non-local boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5335-5351. doi: 10.3934/dcds.2015.35.5335

[11]

Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 867-880. doi: 10.3934/dcdsb.2006.6.867

[12]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[13]

Victor Isakov. On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data. Inverse Problems & Imaging, 2008, 2 (1) : 151-165. doi: 10.3934/ipi.2008.2.151

[14]

Piotr Kościelniak, Marcin Mazur. On $C^0$ genericity of various shadowing properties. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 523-530. doi: 10.3934/dcds.2005.12.523

[15]

Kingshook Biswas. Maximal abelian torsion subgroups of Diff( C,0). Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 839-844. doi: 10.3934/dcds.2011.29.839

[16]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure & Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

[17]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[18]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[19]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[20]

Thomas H. Otway. Compressible flow on manifolds. Conference Publications, 2001, 2001 (Special) : 289-294. doi: 10.3934/proc.2001.2001.289

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]