\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Backward uniqueness for linearized compressible flow

Abstract Related Papers Cited by
  • We prove that a $C_0$-semigroup of operators $\exp(At)$ satisfies backward uniqueness if the resolvent of $A$ exists on a ray $z=re^{i\theta}$ in the left half plane ($\pi/2<\theta\le \pi$) and satisfies a bound $\|(A-z I)^{-1}\|\le C\exp(|z|^\alpha)$, $\alpha<1$ on this ray. The proof of this result is based on the Phragmen-Lindelöf theorem. The result is applied to the linearized compressible Navier-Stokes equations in one space dimension and to the wave equation with linear damping and absorbing boundary condition.
    Mathematics Subject Classification: 47D06, 93B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Avalos and T. Clark, Backward uniqueness for a PDE fluid-structure interaction, preprint, arXiv:1408.0240.

    [2]

    G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction, J. Diff. Eq., 245 (2008), 737-761.doi: 10.1016/j.jde.2007.10.036.

    [3]

    G. Avalos and R. Triggiani, Backwards uniqueness of the $C_0$-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system, Trans. Amer. Math. Soc., 362 (2010), 3535-3561.doi: 10.1090/S0002-9947-10-04851-8.

    [4]

    S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension, J. Diff. Eq., 257 (2014), 3813-3849.doi: 10.1016/j.jde.2014.07.010.

    [5]

    H. Koch and I. Lasiecka, Backward uniqueness in linear thermoelasticity with time and space variable coefficients, Functional Analysis and Evolution Equations, Birkhäuser, Basel, (2008), 389-403.doi: 10.1007/978-3-7643-7794-6_25.

    [6]

    I. Lasiecka, M. Renardy and R. Triggiani, Backward uniqueness for thermoelastic plates with rotational forces, Semigroup Forum, 62 (2001), 217-242.doi: 10.1007/s002330010035.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return